Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Same gene protects from 1 disease, opens door to another

29.08.2007
Botanists at Oregon State University have discovered that a single plant gene can cause resistance to one disease at the same time it produces susceptibility to a different disease – the first time this unusual phenomenon has ever been observed in plants.

The finding, published this week in Proceedings of the National Academy of Sciences, may help scientists better understand the pathways that genetic disease resistance can take. Plant diseases are a multi-billion dollar problem in agriculture, and scientists for decades have been trying to develop new varieties of plants with resistance to one disease or another.

The research also explains why an epidemic of “Victoria blight,” a fungal disease, occurred in the United States in the 1940s. The Pc-2 gene in a widely-planted, imported variety of oats provided good resistance to oat rust, which is a costly crop disease – but the same gene also caused susceptibility to Victoria blight, and its use had to be discontinued as a result.

“The blight fungus makes a toxin that causes disease in susceptible plants – that is, only plants that carry this gene,” said Jennifer Lorang, an OSU research associate. “But it also turned out that the same gene can provide disease protection. This is very unusual, and should provide insight into genetic influences on disease resistance and susceptibility.”

Most work that has been done on plant diseases is focused on disease resistance, the researchers said, and less has been done on the genetic basis for disease susceptibility.

Among other things, the study suggests that plants bred for resistance to one disease may inadvertently be changed in ways that make them susceptible to a different disease. It also indicates that the physiological basis for disease resistance and susceptibility may have some similarities.

The actual plant used to identify these genetic pathways was Arabidopsis, a small plant in the mustard family, which is frequently used for genetic research. The scientists put the Pc-2-like gene in Arabidopsis, which has a similar function in oats, and were able to determine that it causes disease susceptibility, although it looks like a resistance gene.

Tom Wolpert | EurekAlert!
Further information:
http://www.oregonstate.edu

Further reports about: Genetic disease resistance resistance susceptibility

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>