Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cancer weapon: nuclear nanocapsules

28.08.2007
Nanotubes packing powerful alpha-emitters could target lone cancer cells

Rice University chemists have found a way to package some of nature's most powerful radioactive particles inside DNA-sized tubes of pure carbon -- a method they hope to use to target tiny tumors and even lone leukemia cells.

"There are no FDA-approved cancer therapies that employ alpha-particle radiation," said lead researcher Lon Wilson, professor of chemistry. "Approved therapies that use beta particles are not well-suited for treating cancer at the single-cell level because it takes thousands of beta particles to kill a lone cell. By contrast, cancer cells can be destroyed with just one direct hit from an alpha particle on a cell nucleus."

The study's results are available online and slated to appear in an upcoming issue of the journal Small.

... more about:
»Alpha »Radiation »Radioactive »Wilson »beta »decay

In the study, Wilson, Rice graduate student Keith Hartman, University of Washington (UW) radiation oncologist Scott Wilbur and UW research scientist Donald Hamlin, developed and tested a process to load astatine atoms inside short sections of carbon nanotubes. Because astatine is the rarest naturally occurring element on Earth -- with less than a teaspoon estimated to exist in the Earth's crust at any given time -- the research was conducted using astatine created in a UW cyclotron.

Astatine, like radium and uranium, emits alpha particles via radioactive decay. Alpha particles, which contain two protons and two neutrons, are the most massive particles emitted as radiation. They are about 4,000 times more massive than the electrons emitted by beta decay -- the type of radiation most commonly used to treat cancer.

"It's something like the difference between a cannon shell and a BB," Wilson said. "The extra mass increases the amount of damage alpha particles can inflict on cancer cells."

The speed of radioactive particles is also an important factor in medical use. Beta particles travel very fast. This, combined with their small size, gives them significant penetrating power. In cancer treatment, for example, beams of beta particles can be created outside the patient's body and directed at tumors. Alpha particles move much more slowly, and because they are also massive, they have very little penetrating power. They can be stopped by something as flimsy as tissue paper.

"The unique combination of low penetrating power and large particle mass make alpha particle ideal for targeting cancer at the single-cell level," Wilson said. "The difficulty in developing ways to use them to treat cancer has come in finding ways to deliver them quickly and directly to the cancer site."

In prior work, Wilson and colleagues developed techniques to attach antibodies to carbon fullerenes like nanotubes. Antibodies are proteins produced by white blood cells. Each antibody is designed to recognize and bind only with a specific antigen, and doctors have identified a host of cancer-specific antibodies that can be used to kill cancer cells.

In follow-up research, Wilson hopes to test the single-celled cancer targeting approach by attaching cancer-specific antibodies to astatine-loaded nanotubes.

One complicating factor in any astatine-based cancer therapy will be the element's short, 7.5-hour half-life. In radioactive decay, the term half-life refers to the time required for any quantity of a substance to decay by half its initial mass. Due to astatine's brief half-life, any treatment must be delivered in a timely way, before the particles lose their potency.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Alpha Radiation Radioactive Wilson beta decay

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>