Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells united against cancer

28.08.2007
Sheets of highly organized epithelial cells line all the cavities and free surfaces of the body, forming barriers that control the movement of liquids and cells in the body organs.

The organized structure of normal breast epithelial cells may also serve as a barrier against cancer, according to a study by University of Helsinki scientists. The work appears this week in the online edition of the Proceedings of the National Academy of Sciences (PNAS).

Finnish researchers found that the tightly organized architecture of mammary epithelial cells is a powerful restraint against the cancer gene provoked inappropriate proliferation. Their study also links function of a tumor suppressor gene to the development of cancer gene resistant epithelial organization.

"Rogue cancer genes can force epithelial cells to proliferate and proliferation of malignant cells will certainly disrupt the organized epithelial structure. However, there has always been this chicken or the egg problem: Does cancer gene initiate cell proliferation, which causes disruption of the epithelial structure or does loss of tissue structure come first, creating suitable environment for cancer genes to enforce the cell cycle progression?" explains the research team leader Juha Klefstrom, Ph.D. The present study supports the idea that loss of tissue structure comes first.

Experiments with fly models have shown that loss of epithelial organization can enhance the tumorigenic potential of cancer genes (oncogenes) and these findings prompted Juha Klefstrom's team to explore whether the formation of epithelial organization works other way around and suppresses oncogene function. "We were amazed to find out that the formation of organized mammary epithelial architecture in three-dimensional organotypic cell culture correlated with complete loss of oncogenic activities of c-Myc cancer gene" says Klefstrom.

Johanna Partanen, a graduate student in Klefstrom's laboratory and lead author in the article, continues "We also asked how to dismantle the proliferation resistance of the epithelial organization. To find clues to genes involved in the development of organized epithelial structure, we turned back to fly". Epithelial cells of both flies and humans live their lives in the companionship of others, held together by tight belt of adhesion proteins and interactions with supporting extracellular matrix. Developmental geneticists working with fly models have identified an important group of genes, PAR genes, which regulate the development of highly ordered epithelial cell organization. "Most interesting candidate for us was LKB1, the human homologue of Par4 protein, because this gene has strong connection to human epithelial disorders" says Partanen. Previous research done by Akseli Hemminki, Lauri Aaltonen and Tomi Mäkelä at the University of Helsinki has linked this gene to Peutz-Jeghers cancer predisposition syndrome and it has also been suggested that LKB1 has tumor suppressor functions in several epithelial cancers. Klefstrom's team found that epithelial cells missing the LKB1 protein are able to form only cancer-like disorganized epithelial structures. This disorganized environment enables c-Myc oncogene to drive inappropriate cell proliferation.

The study demonstrates that organized epithelial structure can suppress malignant actions of cancer genes and identifies LKB1 tumor suppressor gene as an architect of this proliferation resistant organizational plan. The ordered structure of epithelial cells is frequently lost in epithelial tumors, like breast carcinoma, and the study suggests that loss of structure may play more active role in progression of tumors than previously anticipated.

This study was funded by the Academy of Finland, Finnish Funding Agency for Technology and Innovation (TEKES), the Sigrid Juselius Foundation, Helsinki University Central Hospital, the Lilly Foundation, and the Juliana von Wendt Foundation.

Paivi Lehtinen | alfa
Further information:
http://research.med.helsinki.fi/gsb/klefstrom/
http://www.helsinki.fi

Further reports about: LKB1 epithelial organized proliferation structure suppress

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>