Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battling bitter coffee -- chemists vs. main source of coffee bitterness

23.08.2007
Bitter taste can ruin a cup of coffee. Now, chemists in Germany and the United States say they have identified the chemicals that appear to be largely responsible for java's bitterness, a finding that could one day lead to a better tasting brew. Their study, one of the most detailed chemical analyses of coffee bitterness to date, was presented today at the 234th national meeting of the American Chemical Society.

Research by others over the past few years has identified an estimated 25 to 30 compounds that could contribute to the perceived bitterness of coffee. But the main cause of coffee bitterness has remained largely unexplored until now, the researchers say.

"Everybody thinks that caffeine is the main bitter compound in coffee, but that's definitely not the case," says study leader Thomas Hofmann, Ph.D., a professor of food chemistry and molecular sensory science at the Technical University of Munich in Germany. Only 15 percent of java's perceived bitterness is due to caffeine, he estimates, noting that caffeinated and decaffeinated coffee both have similar bitterness qualities.

"Roasting is the key factor driving bitter taste in coffee beans. So the stronger you roast the coffee, the more harsh it tends to get," Hofmann says, adding that prolonged roasting triggers a cascade of chemical reactions that lead to the formation of the most intense bitter compounds.

... more about:
»Main »Source »acid »bean »bitterness »chlorogenic »compound »lactones

Using advanced chromatography techniques and a human sensory panel trained to detect coffee bitterness, Hofmann and his associates found that coffee bitterness is due to two main classes of compounds: chlorogenic acid lactones and phenylindanes, both of which are antioxidants found in roasted coffee beans. The compounds are not present in green (raw) beans, the researchers note.

"We've known for some time that the chlorogenic acid lactones are present in coffee, but their role as a source of bitterness was not known until now," Hofmann says. Ironically, the lactones as well as the phenylindanes are derived from chlorogenic acid, which is not itself bitter.

Chlorogenic acid lactones, which include about 10 different chemicals in coffee, are the dominant source of bitterness in light to medium roast brews. Phenylindanes, which are the chemical breakdown products of chlorogenic acid lactones, are found at higher levels in dark roasted coffee, including espresso. These chemicals exhibit a more lingering, harsh taste than their precursors, which helps explain why dark-roasted coffees are generally more bitter, Hofmann says.

The type of brewing method used can also influence the perception of bitterness. Espresso-type coffee, which is made using high pressure combined with high temperatures, tends to produce the highest levels of bitter compounds. While home-brewed coffee and standard coffee shop brews are relatively similar in their preparation methods, their perceived bitterness can vary considerably depending on the roasting degree of the beans, the amount of coffee used, and the variety of beans used.

Some instant coffees are actually less bitter than regular coffee, Hofmann says. This is because their method of preparation, namely pressure extraction, degrades some of the bitter compounds. In some cases, as much as 30 to 40 percent fewer chlorogenic acid lactones are produced, leading to a reduced perception of bitterness, he says.

"Now that we've clarified how the bitter compounds are formed, we're trying to find ways to reduce them," Hofmann says. He and his associates are currently exploring ways to specially process the raw beans after harvesting to reduce their potential for producing bitterness. They are also experimenting with different bean varieties in an effort to improve taste. But so far, none of these approaches - details of which are being kept confidential by the researchers - is ready for commercialization, he notes.

But the researchers are optimistic that a better cup of Joe is just around the corner. Perhaps no one could be happier about the news than Hofmann, who admits that he is an avid coffee-drinker with a passion for the dark-roasted varieties.

Charmayne Marsh | EurekAlert!
Further information:
http://chemistry.org/bostonnews/images.html
http://www.acspresscenter.org

Further reports about: Main Source acid bean bitterness chlorogenic compound lactones

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>