Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battling bitter coffee -- chemists vs. main source of coffee bitterness

23.08.2007
Bitter taste can ruin a cup of coffee. Now, chemists in Germany and the United States say they have identified the chemicals that appear to be largely responsible for java's bitterness, a finding that could one day lead to a better tasting brew. Their study, one of the most detailed chemical analyses of coffee bitterness to date, was presented today at the 234th national meeting of the American Chemical Society.

Research by others over the past few years has identified an estimated 25 to 30 compounds that could contribute to the perceived bitterness of coffee. But the main cause of coffee bitterness has remained largely unexplored until now, the researchers say.

"Everybody thinks that caffeine is the main bitter compound in coffee, but that's definitely not the case," says study leader Thomas Hofmann, Ph.D., a professor of food chemistry and molecular sensory science at the Technical University of Munich in Germany. Only 15 percent of java's perceived bitterness is due to caffeine, he estimates, noting that caffeinated and decaffeinated coffee both have similar bitterness qualities.

"Roasting is the key factor driving bitter taste in coffee beans. So the stronger you roast the coffee, the more harsh it tends to get," Hofmann says, adding that prolonged roasting triggers a cascade of chemical reactions that lead to the formation of the most intense bitter compounds.

... more about:
»Main »Source »acid »bean »bitterness »chlorogenic »compound »lactones

Using advanced chromatography techniques and a human sensory panel trained to detect coffee bitterness, Hofmann and his associates found that coffee bitterness is due to two main classes of compounds: chlorogenic acid lactones and phenylindanes, both of which are antioxidants found in roasted coffee beans. The compounds are not present in green (raw) beans, the researchers note.

"We've known for some time that the chlorogenic acid lactones are present in coffee, but their role as a source of bitterness was not known until now," Hofmann says. Ironically, the lactones as well as the phenylindanes are derived from chlorogenic acid, which is not itself bitter.

Chlorogenic acid lactones, which include about 10 different chemicals in coffee, are the dominant source of bitterness in light to medium roast brews. Phenylindanes, which are the chemical breakdown products of chlorogenic acid lactones, are found at higher levels in dark roasted coffee, including espresso. These chemicals exhibit a more lingering, harsh taste than their precursors, which helps explain why dark-roasted coffees are generally more bitter, Hofmann says.

The type of brewing method used can also influence the perception of bitterness. Espresso-type coffee, which is made using high pressure combined with high temperatures, tends to produce the highest levels of bitter compounds. While home-brewed coffee and standard coffee shop brews are relatively similar in their preparation methods, their perceived bitterness can vary considerably depending on the roasting degree of the beans, the amount of coffee used, and the variety of beans used.

Some instant coffees are actually less bitter than regular coffee, Hofmann says. This is because their method of preparation, namely pressure extraction, degrades some of the bitter compounds. In some cases, as much as 30 to 40 percent fewer chlorogenic acid lactones are produced, leading to a reduced perception of bitterness, he says.

"Now that we've clarified how the bitter compounds are formed, we're trying to find ways to reduce them," Hofmann says. He and his associates are currently exploring ways to specially process the raw beans after harvesting to reduce their potential for producing bitterness. They are also experimenting with different bean varieties in an effort to improve taste. But so far, none of these approaches - details of which are being kept confidential by the researchers - is ready for commercialization, he notes.

But the researchers are optimistic that a better cup of Joe is just around the corner. Perhaps no one could be happier about the news than Hofmann, who admits that he is an avid coffee-drinker with a passion for the dark-roasted varieties.

Charmayne Marsh | EurekAlert!
Further information:
http://chemistry.org/bostonnews/images.html
http://www.acspresscenter.org

Further reports about: Main Source acid bean bitterness chlorogenic compound lactones

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>