Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battling bitter coffee -- chemists vs. main source of coffee bitterness

23.08.2007
Bitter taste can ruin a cup of coffee. Now, chemists in Germany and the United States say they have identified the chemicals that appear to be largely responsible for java's bitterness, a finding that could one day lead to a better tasting brew. Their study, one of the most detailed chemical analyses of coffee bitterness to date, was presented today at the 234th national meeting of the American Chemical Society.

Research by others over the past few years has identified an estimated 25 to 30 compounds that could contribute to the perceived bitterness of coffee. But the main cause of coffee bitterness has remained largely unexplored until now, the researchers say.

"Everybody thinks that caffeine is the main bitter compound in coffee, but that's definitely not the case," says study leader Thomas Hofmann, Ph.D., a professor of food chemistry and molecular sensory science at the Technical University of Munich in Germany. Only 15 percent of java's perceived bitterness is due to caffeine, he estimates, noting that caffeinated and decaffeinated coffee both have similar bitterness qualities.

"Roasting is the key factor driving bitter taste in coffee beans. So the stronger you roast the coffee, the more harsh it tends to get," Hofmann says, adding that prolonged roasting triggers a cascade of chemical reactions that lead to the formation of the most intense bitter compounds.

... more about:
»Main »Source »acid »bean »bitterness »chlorogenic »compound »lactones

Using advanced chromatography techniques and a human sensory panel trained to detect coffee bitterness, Hofmann and his associates found that coffee bitterness is due to two main classes of compounds: chlorogenic acid lactones and phenylindanes, both of which are antioxidants found in roasted coffee beans. The compounds are not present in green (raw) beans, the researchers note.

"We've known for some time that the chlorogenic acid lactones are present in coffee, but their role as a source of bitterness was not known until now," Hofmann says. Ironically, the lactones as well as the phenylindanes are derived from chlorogenic acid, which is not itself bitter.

Chlorogenic acid lactones, which include about 10 different chemicals in coffee, are the dominant source of bitterness in light to medium roast brews. Phenylindanes, which are the chemical breakdown products of chlorogenic acid lactones, are found at higher levels in dark roasted coffee, including espresso. These chemicals exhibit a more lingering, harsh taste than their precursors, which helps explain why dark-roasted coffees are generally more bitter, Hofmann says.

The type of brewing method used can also influence the perception of bitterness. Espresso-type coffee, which is made using high pressure combined with high temperatures, tends to produce the highest levels of bitter compounds. While home-brewed coffee and standard coffee shop brews are relatively similar in their preparation methods, their perceived bitterness can vary considerably depending on the roasting degree of the beans, the amount of coffee used, and the variety of beans used.

Some instant coffees are actually less bitter than regular coffee, Hofmann says. This is because their method of preparation, namely pressure extraction, degrades some of the bitter compounds. In some cases, as much as 30 to 40 percent fewer chlorogenic acid lactones are produced, leading to a reduced perception of bitterness, he says.

"Now that we've clarified how the bitter compounds are formed, we're trying to find ways to reduce them," Hofmann says. He and his associates are currently exploring ways to specially process the raw beans after harvesting to reduce their potential for producing bitterness. They are also experimenting with different bean varieties in an effort to improve taste. But so far, none of these approaches - details of which are being kept confidential by the researchers - is ready for commercialization, he notes.

But the researchers are optimistic that a better cup of Joe is just around the corner. Perhaps no one could be happier about the news than Hofmann, who admits that he is an avid coffee-drinker with a passion for the dark-roasted varieties.

Charmayne Marsh | EurekAlert!
Further information:
http://chemistry.org/bostonnews/images.html
http://www.acspresscenter.org

Further reports about: Main Source acid bean bitterness chlorogenic compound lactones

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>