Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aluminium found in sunscreens and sunblocks

13.08.2007
Scientists at Keele University in Staffordshire have questioned the safety of aluminium added to sunscreens and sunblocks.

The researchers, Scott Nicholson, BSc, and Dr Christopher Exley, PhD, Birchall Centre for Inorganic Chemistry and Materials Science at Keele, measured the aluminium content of sunscreens/sunblocks, which either include or do not include an aluminium salt (for example, aluminium hydroxide, aluminium oxide, aluminium silicate, aluminium stearate, aluminium starch octenylsuccinate) as an ingredient.

Aluminium was present in all seven products tested and its content was of particular significance in three products, each of which listed it as an ingredient. Following numerous enquiries the manufacturers were not forthcoming as to the role of aluminium in their product, except one manufacturer, who confirmed that aluminium hydroxide was added to their product to coat the surface and thereby prevent the agglomeration of another ingredient, titanium dioxide particles.

World Health Organisation guidelines recommend a single application of at least 35mL of a sunscreen/sunblock to achieve the stated sun protection factor. For three of the sunscreens/sunblocks investigated a single application of product would result in 200 mg of aluminium being applied to the skin surface. In addition, WHO guidelines suggest re-application of product every two hours which, for example, for an average day on the beach, would result in up to 1g of aluminium being applied to the skin surface.

Skin is permeable to aluminium salts when, for example, they are topically applied as antiperspirant formulations. It will accumulate in the skin and be transported to sites throughout the body. It is highly likely that the everyday use of sunscreens/sunblocks is an hitherto unrecognised contributor of aluminium to the human body burden of this non-essential metal. Perhaps of immediate significance is the potential for aluminium in the skin to act as a pro-oxidant.

Recent research in the journal Free Radical Biology and Medicine has shown that UV filters in sunscreens promote the formation of reactive oxygen species (ROS) in the nucleated epidermis of the skin. The authors speculate upon the role which might be played by anti-oxidants, either already in the skin or included in sunscreen formulations, in counteracting the pro-oxidant activities of UV filters though they did not consider how the presence of additional pro-oxidants might exacerbate such effects.

Aluminium is one such pro-oxidant and could significantly increase the potential for oxidative damage in the skin. While the relationship between the burgeoning use of sunscreens/sunblocks and the increased incidence of skin cancers and, in particular, melanoma, is highly controversial it has not hitherto been considered that aluminium in these products could be an extremely significant contributing factor. Of course, aluminium is already in the skin surface and may not need to be a component of sunscreens/sunblocks to exacerbate oxidative damage attributed to the application of such products.

Chris Stone | alfa
Further information:
http://www.keele.ac.uk

Further reports about: ALUMINIUM pro-oxidant skin sunscreens/sunblocks

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>