Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Porphyrin electron-transfer reactions observed at the molecular level

06.08.2007
Researchers at Temple University have observed and documented electron transfer reactions on an electrode surface at the single molecule level for the first time, a discovery which could have future relevance to areas such as molecular electronics, electrochemistry, biology, catalysis, information storage, and solar energy conversion.

The researchers have published their findings, “Dynamics of Porphyrin Electron-Transfer Reactions at the Electrode–Electrolyte Interface at the Molecular Level,” in the international scientific journal, Angewandte Chemie (http://www3.interscience.wiley.com/cgi-bin/abstract/114287533/ABSTRACT).

“The simplest chemical reactions are oxidation and reduction,” says Eric Borguet, professor of chemistry at Temple and the study’s main author. “Chemistry is basically all about the transfer of electrons from one atom to another or one molecule to another. Those reactions are called ‘redox’ reactions.”

According to Borguet, one important place where these reactions occur is on an electrode surface. For example, metal corrosion is essentially oxidation. Corrosion can sometimes be reversed by reducing the oxides and reclaiming the metal.

... more about:
»Borguet »Molecule »Oxidation »electrode »oxidize

“Most of our studies of oxidation and reduction basically involve measuring the flow of electrons in and out of bulk chemical systems,” he says. “We’ve never really looked at this at the single molecule level, looking at it one molecule at a time. And it wasn’t necessarily clear that we could do that.”

As part of their research, Borguet and his collaborator were looking on a metal electrode surface at porphyrins, an important class of molecules that are involved in a number of biological processes, and in fact, can act as a catalyst for these processes.

The Temple researchers used scanning tunneling microscopy, in which a sharp metal tip scans the electrode surface and measures the passage of electrons from the tip, through the molecules, to the metal surface. They noted that the chemical state of the molecule changes the ability of the electrons to pass from the metal tip to the electrode.

“We noticed that some of these molecules, under certain conditions, appeared dark while others appeared bright,” noted Borguet. “What we essentially figured out was that the molecules change color and appear dark when we apply a potential to the electrode that begins to oxidize, or essentially pull out an electron from, the molecule. So now it seems that we can see the difference between oxidized molecules—the dark ones—and reduced molecules—the bright ones.”

Borguet says that by gaining a handle on the molecules’ chemical state, researchers now have the ability to identify oxidized and reduced molecules, and to track them individually.

“As researchers, we can now ask questions such as ‘Do molecules oxidize one at a time or do entire domains or areas on the surface oxidize together"’,” he says. “Do they oxidize in pairs or in clusters" If one molecule oxidizes, is it going to make the oxidation of a neighboring molecule more or less likely" What is the timescale under which these processes occur and what factors facilitate redox reactions"”

Borguet believes the Temple researchers are the first to observe and understand this interfacial electron transfer process at the single molecule level.

“We think if you look back in the literature and at other peoples’ data there is some evidence for this, but I don’t think they actually recognized that they were observing this process,” he says.

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

Further reports about: Borguet Molecule Oxidation electrode oxidize

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>