Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotech Clay Armour Creates Fire Resistant Hard Wearing Latex Emulsion Paints

26.07.2007
Researchers at the University of Warwick's Department of Chemistry have found a way of replacing the soap used to stabilize latex emulsion paints with nanotech sized clay armour that can create a much more hard wearing and fire resistant paint.

To date latex emulsion paints have relied on the addition of soaps or similar materials to overcome the polymer parts of the paint's aversion to water, stabilize the paint, and make it work.

The University of Warwick chemistry researchers led by Dr Stefan Bon have found a simple way to individually coat the polymer particles used in such paints with a series of nanosized Laponite clay discs. The discs effectively create an armoured layer on the individual polymer latex particles in the paint. The clay discs are 1 nanometre thick by 25 nanometres in diameter (a nanometre is one billionth of a metre).

The Lapointe clay discs can be applied using current industrial paint manufacture equipment. They not only provides an alternative to soap but can also be used to make the paint much more hard wearing and fire resistant.

... more about:
»Polymer »discs

The process devised by the Warwick team can be used to create highly sensitive materials for sensors. The researchers can take closely packed sample of the armoured polymers and heat it to burn away the polymer cores of the armoured particles leaving just a network of nanotech sized connected hollow spheres. This gives a very large useful surface area in a very small space which is an ideal material to use to create compact but highly sensitive sensors.

Their research is in a paper enitled "Pickering Miniemulsion Polymerization Using Laponite Clay as a Stabilizer" by Stefan A. F. Bon and Patrick J. Colver and is published as the cover article in Langmuir. The ACS Journal of Surfaces and Colloids Vol. 23, Issue 16 July 31.

See: http://pubs.acs.org/cgi-bin/article.cgi/langd5/2007/23/i16/pdf/la701150q.pdf

Peter Dunn | alfa
Further information:
http://pubs.acs.org/cgi-bin/article.cgi/langd5/2007/23/i16/pdf/la701150q.pdf
http://www2.warwick.ac.uk/newsandevents/pressreleases/nanotech_clay_armour/

Further reports about: Polymer discs

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>