Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Analysis & Biostatistics – 3 Is Better Than 2 But Not Than 4

17.07.2007
Three-stage procedures offer an optimal relationship between costs and benefits in analysing genetic influences in diseases and therapies, a fact that has major practical importance for the ever growing number of gene analyses.

This finding from a current project by the Austrian Science Fund FWF was presented at the 5th International Conference on Multiple Comparison Procedures (MCP2007) in Vienna, which recently drew to a close. The conference, held at the Medical University, focused on the increasingly important issue of boosting the efficiency of medical studies in statistical terms.

30,000 – this is the number of genes that can be analysed simultaneously with state-of-the-art instruments. Such analyses provide a means of identifying whether individual genes have a decisive impact in the course of a disease or therapy. However, the more genes that are examined in a study, the greater the probability of incorrectly identifying a gene as a factor when, in reality, it has no influence.

MORE CONCENTRATION – LESS ERRORS

... more about:
»Medical »Result »method

Dr. Sonja Zehetmayer from the Department of Medical Statistics, Medical University of Vienna, says: "The problem of identifying factors incorrectly could be countered by a very high number of repetition. However, repetition normally needs to be kept to a minimum, owing to high costs. A more innovative approach to solve this problem is offered by multi-stage methods. These involve preselecting genes following the first examination stage. In subsequent stages, only these selected genes are subject to further analysis. Concentrating on fewer genes thereby cuts error probability."

The question of exactly how many stages are needed to deliver an optimal cost-benefit ratio has until now remained unresolved. The answer has now been calculated, published, and discussed by Dr. Zehetmayer and her colleagues at the MCP2007 held in Vienna from 8 to 11 July. In actual fact, the solution turned out to be unexpectedly straightforward – three stages deliver the optimal ratio between the accuracy of the results obtained and the costs necessary for this. Although a fourth stage would offer greater accuracy, the resources this would require are out of all proportion to the additional accuracy gained.

TEST DESIGN

Dr. Zehetmayer also found surprising results when she compared two different test designs with each other: "Multi-stage series of tests can be analysed either by integrating the results of all levels or by analysing the results of only the last stage. While the choice of test design for four-stage methods has a marked effect on its statistical characteristics, this effect is mitigated in the case of a three-stage method."

Dr. Zehetmayer’s colleague Alexandra Goll presented a further aspect contributing to the optimum configuration of test methods at the MCP2007. She showed that the individual stages of multi-stage test methods can be configured very differently without having a major detrimental effect on the accuracy of the end result. This means that initial stages can clearly be more cost-effective if more accurate and more expensive methods are used for the following stages (involving fewer genes).

There is good reason why the latest trends in the statistical analysis of clinical data are being initiated and analysed at the Department of Medical Studies at the Medical University of Vienna. Prof. Peter Bauer published a paper there in 1989 refuting a basic principle of biostatistics that the test design in an ongoing study must not be changed until the end. This evidence is and remains the basis for multi-stage adaptive analytical methods that have recently attracted worldwide research interest due to cost pressures in healthcare and are supported by the FWF in Austria.

Image and text will be available online from Monday, 16th July 2007, 09.00 a.m. CET onwards:

http://www.fwf.ac.at/en/public_relations/press/pv200707-en.html

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv200707-en.html

Further reports about: Medical Result method

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>