Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystal structure enables tailoring of pharmaceuticals against asthma

17.07.2007
Researchers at Karolinska Institutet in Sweden have managed to elucidate the crystal structure of a human membrane protein – LTC4 synthase – which has a major influence on the development of asthma. LTC4 synthase is extremely difficult to analyze, and previously only low resolution information has been available on two membrane protein structures from human. The scientists now believe that their work will enable the development of new and better therapeutics against inflammations in the pulmonary tract.

Asthma attacks are caused by an acute inflammatory reaction in the airways, a reaction that is largely due to actions of LTC4 synthase. For this reason asthma medicines often aim at blocking the downstream effects of LTC4 synthase. However, there is a need for new pharmaceutical alternatives, since not all patients respond to the existing medicines.

Scientists at the Department of Medical Biochemistry and Biophysics have now, with the help of the two EU networks “EICOSANOX” and “E-Mep”, elucidated the three dimensional structure of the LTC4 synthase at 2.0 Å resolution (1 Å = 1 Ångström = 10-10 m = 0,000 000 000 1 m). It is clear from the structure that the protein has three identical subunits, each of them consisting of four spiral structures that span the nuclear membrane. Also the exact position and characteristics of the active sites, where activating or blocking molecules can bind, have been identified. With this knowledge it is now possible to tailor new molecules that can block the LTC4 synthase.

The new results are also very important as they can lead the way for the development of new and more effective therapeutics against other diseases. Some 40 % of the proteins of interest for pharmaceutical developments are membrane proteins. Until now detailed structural information on these proteins has been absent, and therefore it has been difficult to fully understand their function. The present study is likely to lead the way for the determination of structures of other human membrane proteins. The elucidation of more membrane protein structures will help us understand fundamental processes that take place in the cell membranes.

Facts: Proteins consist of a chain of amino acids. The length of this chain can range from a few to thousands of amino acids. The chain is then folded in a characteristic way and the 3-D structure can bind different molecules. Determining a protein structure and its biochemical characteristics helps us understand its function, and to design blocking or activating molecules which can serve as medicines. A known protein structure therefore makes it easier and faster to develop new pharmaceuticals.

The EU network EICOSANOX brings together leading scientists from Europe and Canada, and is coordinated by Karolinska Institutet.

Publication:

“Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase”
Martinez Molina D, Wetterholm A, Kohl A, McCarthy AA, Niegowski D, Ohlson E, Hammarberg T, Eshaghi S, Haeggström JZ, Nordlund P.

Nature, AOP 15 July 2007

Katarina Sternudd | alfa
Further information:
http://www.ki.se

Further reports about: Asthma LTC4 Pharmaceutical amino acid protein structure synthase

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>