Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues To Future Evolution Of HIV Come From African Green Monkeys

17.07.2007
Monkey viruses related to HIV may have swept across Africa more recently than previously thought, according to new research from The University of Arizona in Tucson.

A new family tree for African green monkeys shows that an HIV-like virus, simian immunodeficiency virus, or SIV, first infected those monkeys after the lineage split into four species. The new research reveals the split happened about 3 million years ago.

Previously, scientists thought SIV infected an ancestor of green monkeys before the lineage split, much longer ago.

"Studying SIV helps us learn more about HIV," said the paper's first author Joel Wertheim, a doctoral candidate in the UA department of ecology and evolutionary biology. "This finding sheds light on the future direction of HIV evolution."

... more about:
»Chlorocebus »HIV »Monkey »SIV »SIVagm »Worobey »grivet »infected »vervet

All SIVs and HIVs have a common ancestor, added senior author Michael Worobey, a UA assistant professor of ecology and evolutionary biology.

The new work suggests African green monkeys' SIVs, or SIVagm, may have lost their virulence more recently than the millions of years previously thought. Green monkeys almost never get sick from SIVagm. If SIVagm was once a monkey killer, the change in its virulence may shed light on the future course and timing of the evolution of HIV.

The new research also challenges the idea that one ancient SIV was transmitted vertically, down through time, and evolved into many SIVs as its original host diverged into many different species.

Wertheim and Worobey suggest various SIVs arose because SIVs were transmitted horizontally, between primate species, and evolved into a new host-specific form only after transmission.

HIV arose from chimpanzee SIV that was transmitted to humans, probably when people had contact with chimpanzee blood from hunting and butchering the animals, Worobey said.

The team's research article, "A Challenge to the Ancient Origin of SIVagm Based on African Green Monkey Mitochondrial Genomes," is in the July issue of PLoS Pathogens and can be found at http://pathogens.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.ppat.0030095. The National Science Foundation and National Institutes of Health funded the research.

Previous research had sketched out the family trees, or phylogenies, of the four species of African green monkeys and their accompanying SIVagm, but Wertheim wanted to know more.

"I wasn't convinced by the evidence out there that these monkeys were infected before they speciated," Wertheim said. "So I set out to perform a rigorous test of that hypothesis."

He extensively sequenced the mitochondrial DNA genes of the four species of African green monkeys. Mitochondrial DNA is passed from mother to child.

The four green monkeys he studied are the sabaeus monkey, Chlorocebus sabaeus, which lives in western Africa; the tantalus monkey, Chlorocebus tantalus, which is found in central Africa; the vervet monkey, Chlorocebus pygerythrus, which lives in eastern and southern Africa; and the grivet monkey, Chlorocebus aethiops, which lives in northeast Africa.

The scientists used the genetic sequences to sort out the ancestral relationships among the different species of monkeys. Other researchers had already constructed phylogenies for the four different SIVagm that showed their relationships.

"We put together, for the first time, a really solid phylogeny for African green monkeys, which we didn't have before," Worobey said.

If the monkeys' ancestor had been infected with an ancient SIV, the SIV family tree should match that of the four monkey species.

The trees didn't match.
"The monkey tree was significantly different from the virus tree," Wertheim said.

The researchers then looked at the geographic distribution of the four African green monkey species. The relative ages and information on which pairs of SIVagm were most closely related revealed the probable transmission route of SIV.

The researchers hypothesize that the infection started in the westernmost species, sabaeus monkeys, moved east into neighboring tantalus monkeys, and then took one of two paths: southeast into vervets and then north into grivets or northeast into grivets and then south into vervets.

Wertheim said, "I was surprised that the geography could explain the virus phylogenetic tree, how well it fit. You just look and -- there it is!"

The UA researchers suggest that in the border zones where two African green monkey species' ranges come in contact, transmission probably happened during interspecies sexual encounters or fights. Wertheim pointed out that hybrid monkeys have been seen in the wild in the border zones.

Worobey said, "Some of the trends we see give new evidence on how quickly or slowly these changes take place."

Citing some laboratory research that suggests HIVs from the late 1980s are more virulent than HIVs from the 2000s, Worobey added, "For HIV, the really cool thing is that these changes can take place on a more rapid timeline that previously thought."

Wertheim adds, "Understanding how emerging infectious diseases evolve in their natural host organism helps us understand the disease's possible trajectory."

The team's next steps are figuring out exactly when SIV infected African green monkeys and studying SIVs in other species of monkeys.

Joel Wertheim | University of Arizona
Further information:
http://www.arizona.edu
http://pathogens.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.ppat.0030095

Further reports about: Chlorocebus HIV Monkey SIV SIVagm Worobey grivet infected vervet

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>