Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chameleon for Optoelectronics

13.07.2007
Optical semiconductors made of magnetic particles change their color depending on magnetic field strength

A liquid that changes its color “on demand” and can take on any color of the rainbow one desires? A research team headed by Yadong Yin at the University of California, Riverside (USA) has now shared the secret of their wonderful liquid with the journal Angewandte Chemie: Nanoscopic particles made of tiny magnetic crystals coated with a plastic shell self-assemble in solution to form photonic crystals—semiconductors for light. When a magnetic field is applied, the optical properties of the crystals change, allowing their color to be very precisely adjusted through variation of the strength of the field.

The crystals involved here are no “conventional” lattices of ions or molecules like the one we are familiar with for salt; instead they are colloidal crystals, periodic structures that form from uniform solid particles that are finely dispersed in a liquid. Colloidal crystals can be produced at little cost and on a large scale—and can be used as photonic crystals. Photonic crystals are the optical analogue of electronic semiconductor materials. Like their electronic counterparts, they have photonic band gaps, forbidden energy levels, or wavelengths, at which the photonic crystal does not transmit light. These optical properties depend on the spatial relationships within the crystal.

Current research is concerned with photonic crystals whose forbidden bands are variable and can be adjusted quickly and precisely in response to an external stimulus. These requirements have been impossible to meet until now.

... more about:
»Cluster »Magnetic »Photonic »photonic crystals

One stimulus that could be used is a magnetic field, if the crystals are made of magnetic materials, such as iron oxide. The problem with this is that the magnetization is maintained when the particles grow into larger domains (ferromagnetism). Yin and his team have found a solution: They coated nanoscopic iron oxide particles with a plastic called polyacrylate. This results in separate clusters of nanocrystals, which self-assemble in solution to form colloidal photonic crystals. The forces of the magnetic field affect every individual cluster, changing the cluster-to-cluster distances within the crystal lattice. Depending on the distance from the magnet and thus the field strength, the color of the colloidal crystal changes right across the whole visible spectrum. This response is rapid and fully reversible because the nanocrystals in clusters are so small that they lose their magnetism when the magnetic field is shut off (superparamagnetism). Potential applications for these switchable “optical semiconductors” include novel optoelectronic components for telecommunications, displays, and sensors.

Author: Yadong Yin, University of California, Riverside (USA), http://www.chem.ucr.edu/index.html?main=faculty&facsort=profile&faculty=yin

Title: Highly Tunable Superparamagnetic Colloidal Photonic Crystals

Angewandte Chemie International Edition, doi: 10.1002/anie.200701992

Yadong Yin | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Cluster Magnetic Photonic photonic crystals

More articles from Life Sciences:

nachricht Key discoveries offer significant hope of reversing antibiotic resistance
23.10.2017 | University of Bristol

nachricht Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells
23.10.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>