Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chameleon for Optoelectronics

13.07.2007
Optical semiconductors made of magnetic particles change their color depending on magnetic field strength

A liquid that changes its color “on demand” and can take on any color of the rainbow one desires? A research team headed by Yadong Yin at the University of California, Riverside (USA) has now shared the secret of their wonderful liquid with the journal Angewandte Chemie: Nanoscopic particles made of tiny magnetic crystals coated with a plastic shell self-assemble in solution to form photonic crystals—semiconductors for light. When a magnetic field is applied, the optical properties of the crystals change, allowing their color to be very precisely adjusted through variation of the strength of the field.

The crystals involved here are no “conventional” lattices of ions or molecules like the one we are familiar with for salt; instead they are colloidal crystals, periodic structures that form from uniform solid particles that are finely dispersed in a liquid. Colloidal crystals can be produced at little cost and on a large scale—and can be used as photonic crystals. Photonic crystals are the optical analogue of electronic semiconductor materials. Like their electronic counterparts, they have photonic band gaps, forbidden energy levels, or wavelengths, at which the photonic crystal does not transmit light. These optical properties depend on the spatial relationships within the crystal.

Current research is concerned with photonic crystals whose forbidden bands are variable and can be adjusted quickly and precisely in response to an external stimulus. These requirements have been impossible to meet until now.

... more about:
»Cluster »Magnetic »Photonic »photonic crystals

One stimulus that could be used is a magnetic field, if the crystals are made of magnetic materials, such as iron oxide. The problem with this is that the magnetization is maintained when the particles grow into larger domains (ferromagnetism). Yin and his team have found a solution: They coated nanoscopic iron oxide particles with a plastic called polyacrylate. This results in separate clusters of nanocrystals, which self-assemble in solution to form colloidal photonic crystals. The forces of the magnetic field affect every individual cluster, changing the cluster-to-cluster distances within the crystal lattice. Depending on the distance from the magnet and thus the field strength, the color of the colloidal crystal changes right across the whole visible spectrum. This response is rapid and fully reversible because the nanocrystals in clusters are so small that they lose their magnetism when the magnetic field is shut off (superparamagnetism). Potential applications for these switchable “optical semiconductors” include novel optoelectronic components for telecommunications, displays, and sensors.

Author: Yadong Yin, University of California, Riverside (USA), http://www.chem.ucr.edu/index.html?main=faculty&facsort=profile&faculty=yin

Title: Highly Tunable Superparamagnetic Colloidal Photonic Crystals

Angewandte Chemie International Edition, doi: 10.1002/anie.200701992

Yadong Yin | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Cluster Magnetic Photonic photonic crystals

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>