Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants learned to respond to changing environments

13.07.2007
A team of John Innes Centre scientists led by Professor Nick Harberd have discovered how plants evolved the ability to adapt to changes in climate and environment.

Plants adapt their growth, including key steps in their life cycle such as germination and flowering, to take advantage of environmental conditions. They can also repress growth when their environment is not favourable. This involves many complex signalling pathways which are integrated by the plant growth hormone gibberellin.

Publishing in the journal Current Biology, the researchers looked at how plants evolved this ability by looking at the genes involved in the gibberellin signalling pathway in a wide range of plants. They discovered that it was not until the flowering plants evolved 300 million years ago that plants gained the ability to repress growth in response to environmental cues.

All land plants evolved from an aquatic ancestor, and it was after colonisation of the land that the gibberellin mechanism evolved. The earliest land plants to evolve were the bryophyte group, which includes liverworts, hornworts and ancestral mosses, many of which still exist today. The ancestral mosses have their own copies of the genes, but the proteins they make do not interact with each other and can’t repress growth. However, the moss proteins work the same as their more recently evolved counterparts when transferred into modern flowering plants.

... more about:
»Environment »evolved »genes »gibberellin »repress

The lycophyte group, which evolved 400 million years ago, were the first plants to evolve vascular tissues - specialized tissues for transporting water and nutrients through the plant. This group of plants also have the genes involved in the gibberellin signalling mechanism, and the products of their genes are able to interact with each other, and the hormone gibberellin. However this still does not result in growth repression. Not until the evolution of the gymnosperms (flowering plants) 300 million years ago are these interacting proteins able to repress growth. This group of plants became the most dominant, and make up the majority of plant species we see today.

Evolution of this growth control mechanism appears to have happened in a series of steps, which this study is able to associate with major stages in the evolution of today’s flowering plants. It also involves two types of evolutionary change. As well as structural changes that allow the proteins to interact, flowering plants have also changed the range of genes that are turned on and off in response to these proteins. This work was supported by the Biotechnology and Biological Sciences Research Council.

Zoe Dunford | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Environment evolved genes gibberellin repress

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>