Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size and positioning of floral anthers facilitates

11.07.2007
Decoding the evolution of flowers: From genomes to petals

Unlike moths and butterflies that are often brilliantly colored to warn potential predators that they carry toxins, flowers and the fruits they produce have brilliant colors and unusual shapes because they want to attract the attention of pollinators and frugivores who will disperse their pollen and seed, thus guaranteeing the next generation.

In their work, Dr. Endress and his colleagues found that the sizes and positioning of the anthers facilitates pollen collection by buzz-pollinating bees. The male floral structures, anthers, release the pollen gradually, like tiny gumball dispensers. All of these characteristics--size, shape, placement, and timing—may be controlled by networks of genes as well as by regulatory sequences that do not encode proteins. Slight changes in these networks or in the non-coding sequences can change the developmental pattern of a flower and thus its morphology—either dooming it if its pollinators can no longer “fit” properly or guaranteeing the success of the species if it acquires new pollinators. This type of information is becoming ever more critical as we struggle to understand, maintain, and modify the plant and pollinator systems that we depend on for life.

Evo-Devo, or the linking of evolution and development is a shift in the paradigm of how organisms evolved and diversified. In a symposium at the joint annual meeting of the American Society of Plant Biologists and the Botanical Society of America (July 7-11), Dr. Peter Endress of the Institute of Systematic Botany at the University of Zurich will present his work on the functional architecture of flowers and the role of development in floral evolution.

... more about:
»Endress »Pollen »anthers »diversity »floral »pollinator

Charles Darwin, who observed closely the productions of breeders of pigeons, dogs, and flowers, understood that explaining the evolution and diversity of living organisms, from mosses to elephants, would require an understanding of development. In his presentation at a joint ASPB and BSA symposium on evolutionary development at the annual meeting in Chicago (July 9, 2007, 2PM) Dr. Peter Endress will address the need to compare developmental patterns across many taxa of flowering plants to gain insight into flower evolution. In a study reported in the International Journal of Plant Science, Dr. Endress and his coauthors Brigitte Marazzi and Elena Conti, compared floral structures across numerous species of the genus Senna in the pea family. These flowers are specialized to be pollinated by bees that release the pollen through vibrations caused by their buzzing. Endress and his coworkers found a diversity of floral structures that may represent different strategies for pollen dispersal, even in the same genus.

The diversification of flowering plants on earth about 130 million years ago had a profound effect on the evolution of many other kinds of organisms like insects, birds, and mammals, who became the pollinators and consumers of those plants, thus ensuring the continuity of both the plant and its animal partner. Scientists are beginning to understand just how intimate and important these interactions are, as both plants and pollinators are threatened by extinction due to habitat loss and pollution from human activities. The recent alarm over the collapse of honeybee colonies has underscored the importance of insect pollinators not only to crops consumed by humans but also to plants that support the ecosystems we depend on.

Flower architecture has great evolutionary and economic importance. Minute differences in the size and placement of the male and female reproductive parts of a flower can determine how those flowers are pollinated--by insects, birds, animals, wind, or the flowers themselves. Genetic programs determine how the embryos will grow, when the fruit opens to disperse the seed, how the fruit is positioned to attract potential dispersers or when it falls to the ground. The method and timing of pollen dispersal from a plant can determine whether or not a plant modified to resist an insect pest will also have an effect on other more beneficial insects. Scientists are racing to understand these minute differences and interactions, even as habitat loss and climate change threaten the existence of many plants as well as their pollinators. The Floral Genome Project is a consortium of labs in the United States and abroad whose goal is to construct a database that will contain comparative data on the expression patterns for a large number of genes across many different families of flowering plants.

Starting with Linnaeus, plants and animals were formally classified on the basis of their physical characteristics—their morphology. With the revolution in DNA sequencing, or genomics, plants and animals are also classified on the basis of their gene sequences. These two areas of systematics often produced conflicting results, but as more genomes are sequenced and the functions of numerous genes studied, both zoologists and plant biologists have begun to understand that gene sequences alone cannot explain diversity. Within the last few years, scientists have begun to identify groups of genes, called networks, which control complex programs that determine an organism’s final form. In addition, the parts of the genome that do not code for proteins, the non-coding regions, are assuming greater importance in explaining the diversity found in different species of plants and animals.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

Further reports about: Endress Pollen anthers diversity floral pollinator

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>