Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size and positioning of floral anthers facilitates

11.07.2007
Decoding the evolution of flowers: From genomes to petals

Unlike moths and butterflies that are often brilliantly colored to warn potential predators that they carry toxins, flowers and the fruits they produce have brilliant colors and unusual shapes because they want to attract the attention of pollinators and frugivores who will disperse their pollen and seed, thus guaranteeing the next generation.

In their work, Dr. Endress and his colleagues found that the sizes and positioning of the anthers facilitates pollen collection by buzz-pollinating bees. The male floral structures, anthers, release the pollen gradually, like tiny gumball dispensers. All of these characteristics--size, shape, placement, and timing—may be controlled by networks of genes as well as by regulatory sequences that do not encode proteins. Slight changes in these networks or in the non-coding sequences can change the developmental pattern of a flower and thus its morphology—either dooming it if its pollinators can no longer “fit” properly or guaranteeing the success of the species if it acquires new pollinators. This type of information is becoming ever more critical as we struggle to understand, maintain, and modify the plant and pollinator systems that we depend on for life.

Evo-Devo, or the linking of evolution and development is a shift in the paradigm of how organisms evolved and diversified. In a symposium at the joint annual meeting of the American Society of Plant Biologists and the Botanical Society of America (July 7-11), Dr. Peter Endress of the Institute of Systematic Botany at the University of Zurich will present his work on the functional architecture of flowers and the role of development in floral evolution.

... more about:
»Endress »Pollen »anthers »diversity »floral »pollinator

Charles Darwin, who observed closely the productions of breeders of pigeons, dogs, and flowers, understood that explaining the evolution and diversity of living organisms, from mosses to elephants, would require an understanding of development. In his presentation at a joint ASPB and BSA symposium on evolutionary development at the annual meeting in Chicago (July 9, 2007, 2PM) Dr. Peter Endress will address the need to compare developmental patterns across many taxa of flowering plants to gain insight into flower evolution. In a study reported in the International Journal of Plant Science, Dr. Endress and his coauthors Brigitte Marazzi and Elena Conti, compared floral structures across numerous species of the genus Senna in the pea family. These flowers are specialized to be pollinated by bees that release the pollen through vibrations caused by their buzzing. Endress and his coworkers found a diversity of floral structures that may represent different strategies for pollen dispersal, even in the same genus.

The diversification of flowering plants on earth about 130 million years ago had a profound effect on the evolution of many other kinds of organisms like insects, birds, and mammals, who became the pollinators and consumers of those plants, thus ensuring the continuity of both the plant and its animal partner. Scientists are beginning to understand just how intimate and important these interactions are, as both plants and pollinators are threatened by extinction due to habitat loss and pollution from human activities. The recent alarm over the collapse of honeybee colonies has underscored the importance of insect pollinators not only to crops consumed by humans but also to plants that support the ecosystems we depend on.

Flower architecture has great evolutionary and economic importance. Minute differences in the size and placement of the male and female reproductive parts of a flower can determine how those flowers are pollinated--by insects, birds, animals, wind, or the flowers themselves. Genetic programs determine how the embryos will grow, when the fruit opens to disperse the seed, how the fruit is positioned to attract potential dispersers or when it falls to the ground. The method and timing of pollen dispersal from a plant can determine whether or not a plant modified to resist an insect pest will also have an effect on other more beneficial insects. Scientists are racing to understand these minute differences and interactions, even as habitat loss and climate change threaten the existence of many plants as well as their pollinators. The Floral Genome Project is a consortium of labs in the United States and abroad whose goal is to construct a database that will contain comparative data on the expression patterns for a large number of genes across many different families of flowering plants.

Starting with Linnaeus, plants and animals were formally classified on the basis of their physical characteristics—their morphology. With the revolution in DNA sequencing, or genomics, plants and animals are also classified on the basis of their gene sequences. These two areas of systematics often produced conflicting results, but as more genomes are sequenced and the functions of numerous genes studied, both zoologists and plant biologists have begun to understand that gene sequences alone cannot explain diversity. Within the last few years, scientists have begun to identify groups of genes, called networks, which control complex programs that determine an organism’s final form. In addition, the parts of the genome that do not code for proteins, the non-coding regions, are assuming greater importance in explaining the diversity found in different species of plants and animals.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

Further reports about: Endress Pollen anthers diversity floral pollinator

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>