Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify genetic mutation that may alter tumor cell proliferation

05.07.2007
Recurring mutation found in breast, colorectal and ovarian cancers

Researchers from Eli Lilly & Company and the Phoenix-based Translational Genomics Research Institute (TGen) today announced finding a novel recurring mutation of the gene AKT1 in breast, colorectal and ovarian cancers. The altered form of AKT1 appears to cause tumor cell proliferation and may play a role in making cells resistant to certain types of therapies. The findings are reported in an advance online publication (AOP) of the journal Nature.

The PI3-Kinase/AKT pathway is among the most commonly activated cellular pathways in human cancers and members of this pathway are among the most frequently targeted for new cancer drug discovery efforts. Activation of this pathway results in cancer cell growth and cell survival. Although AKT1 is central to pathway activation, its role in cancer has been that of an intermediary between mutated upstream regulatory proteins and downstream survival signaling proteins. This is the first evidence of direct mutation of AKT1 in human cancer tumors: it was discovered in clinical samples from cancer patients, yet has never been detected in cancer cell lines.

“This discovery is a seminal finding in cancer biology that confirms AKT1 as an oncogene in breast, colorectal and ovarian cancer. The mutation alters the electrostatics of binding pocket in the pleckstrin homology domain, the portion of the enzyme that docks with phospholipids on the cell membrane,” said Kerry L. Blanchard, PhD, MD, Executive Director, Discovery Biology Research, Eli Lilly & Company.

... more about:
»AKT1 »Mutation »PhD »Samples »TGen »colorectal »ovarian »pathway »proliferation

To identify the AKT1 mutation, the researchers analyzed 150 tumor samples from patients with either breast, colorectal or ovarian cancer (50 samples from each tumor type). Analysis of the data showed that 8 percent of breast, 6 percent of colorectal and 2 percent of ovarian tumors had the AKT1 mutation in the samples that were screened in their study.

“Recently, molecular features such as the AKT1 mutation are beginning to change drug development efforts. This discovery adds to the short but growing list of molecular features that may help guide both current and future cancer drug development,” said John Carpten, PhD, Senior Investigator and Director of TGen’s Integrated Cancer Genomics Division and the study’s lead author. “The next step is to determine the prevalence of the AKT1 mutation in different populations and, hopefully, use the information gained to stratify patients going into clinical trials for AKT inhibitors.”

If validated by further studies, the identification of this recurring mutation has the potential to impact cancer treatment and drug development.

“This is a gorgeous study that used a variety of sophisticated techniques to provide new insights into the tumorigenic process,” said Bert Vogelstein, MD, Director of the Ludwig Center for Cancer Genetics & Therapeutics at The Johns Hopkins Kimmel Cancer Center.

James E. Thomas, PhD, of Lilly’s Cancer Discovery Research division, explained, “AKT1 is a protein kinase or enzyme that plays a key role in activating survival, proliferation and metabolic pathways. Interestingly, other cellular proteins that regulate this network have also been shown to be mutated in a variety of cancers including lung, breast ovary, prostate, colorectal and brain cancers. This mutation in AKT1 is striking direct evidence for the role of AKT1 in cancer formation.”

The identification of the AKT1 mutation was a collaborative effort between Eli Lilly & Company and TGen. “This discovery demonstrates the importance of studying the genetic make up of cancers at the clinical level rather than relying on model systems,” adds Jeffrey Trent, PhD, Scientific Director of TGen.

“This is a key study highlighting Lilly’s commitment to translational research approaches in cancer drug discovery and development. Furthermore, this work is a great example of a successful public-private partnership at a global level that involves Lilly Research Laboratories in Indianapolis, TGen in Phoenix, Lilly Singapore Centre for Drug Discovery, and the Economic Development Board of Singapore”, adds Richard Gaynor, MD, Vice President of Oncology Discovery at Eli Lilly & Company. He added, “This mutation further validates AKT1 as an attractive drug target, and it also will be a valuable tool for the stratification of patients for targeted therapies. This paradigm of identifying specific defects in cancer cells to successfully develop innovative therapies has been validated with oncology drugs such as Gleevec in leukemia and Herceptin in breast cancer.”

Amy Erickson | EurekAlert!
Further information:
http://www.tgen.org
http://www.lilly.com

Further reports about: AKT1 Mutation PhD Samples TGen colorectal ovarian pathway proliferation

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>