Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revealed: mosquito genes that could be controlling the spread of killer viruses

22.06.2007
The genes that make up the immune system of the Aedes aegypti mosquito which transmits deadly viral diseases to humans have been identified in new research out today in Science.

The immune system of this mosquito is of great importance as scientists believe it plays a key role in controlling the transmission of viruses that cause yellow and dengue fevers – diseases that infect over 50 million people worldwide every year.

This study is the first of its kind on the newly-sequenced genome of the Aedes aegypti mosquito, which is also published in this week’s Science. The researchers identified over 350 genes which are involved in the Aedes mosquito’s immune system, and discovered that they evolve much faster than the rest of the genes in the genome. Identifying which of these key genes are implicated in the transmission of viral diseases is an area of future research that could lead to new ways of combating these diseases. One possibility would be to affect the activity of the genes and therefore help the mosquitoes fight off the viruses more effectively, preventing transmission to humans.

Imperial College scientists participating in this study established previously that other mosquitoes do have a robust immune system that can either allow or block transmission of malaria parasites. Further research will be needed to ascertain whether some of the newly discovered genes in Aedes may provide a similar defence mechanism that can fight the disease viruses.

Dr George Christophides of Imperial’s Division of Cell and Molecular Biology, senior author on the paper explains: “Our study has revealed the genetic ‘landscape’ made by parts of this mosquito’s newly-sequenced genome which are involved with immunity. By working to understand as much as possible about these genes, and the way they interact with specific pathogens, we hope to gain a more complete understanding of the mechanisms by which a pathogen either survives inside the insect body, or is killed by the insect’s defences.”

The international research team, led by Imperial PhD student Robert Waterhouse, focused on comparing the immunity genes of the Aedes mosquito with similar groups of genes in the harmless fruit fly and the Anopheles mosquito that transmits malaria. When comparing the two different mosquitoes, the scientists found some similarities in the genes controlling their respective immune systems, but also numerous differences. The team aims to discover which of these genetic differences could explain why one type of mosquito transmits dengue and yellow fevers, while the other transmits malaria. Beyond the present descriptive work, functional studies will be needed to clarify exactly how this happens.

“This study made us realise that the immune systems of insects are not static but evolve and differentiate rapidly, most likely in response to the different pathogens which each insect species encounters”, says Dr Christophides.

Professor Fotis Kafatos, senior researcher of Imperial’s immunogenomics lab and co-author of the paper, explains the significance of their study, saying: “Understanding the genetics behind pathogen/immune system interactions in disease vector mosquitoes may help us understand why, for example, some types of mosquitoes can transmit a particular human pathogen while others cannot. If those that cannot have evolved an effective immune system that fights off the pathogen, we may be able to use this knowledge to enhance specific reactions of the immune systems in other mosquitoes to control the spread of the disease.”

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: Aedes Controlling Pathogen TransMIT Transmission immune system

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>