Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migration alert -- How tumor cells home in on the lymphatic system

12.06.2007
A Swiss-based research team has published a new mechanistic description of how tumor cells migrate to the lymphatic system in the early stages of tumor metastasis. This new understanding holds significant potential for developing anti-metastasis therapies.

Scientists know that tumor cells spread via the lymphatic system, but they don’t understand the details of how this deadly migration takes place. In the June 2007 issue of the journal Cancer Cell, EPFL Professor Melody Swartz and postdoctoral researcher Jacqueline Shields provide an explanation along with data to support it.

Tumors produce excess fluid that continually percolates from the tumor towards nearby lymphatic vessels. The EPFL research shows how tumor cells use a clever chemical strategy to exploit this slow, one-way flow in order to migrate to functional lymphatic vessels.

As part of their intercellular drainage job, lymphatic tissues secrete small quantities of a signaling molecule. Cells migrate towards high concentrations of this molecule, so if they are close enough to the lymphatic to sense the molecule, they will migrate towards the vessel. Swartz’s group showed that tumor cells secrete this same molecule. Since lymphatics drain fluid, there will always be slow fluid flow going away from the tumor into the lymphatic vessel. This slow flow biases the concentration distribution of this molecule towards the lymphatic, and the tumor cell follows it, like the proverbial carrot on a stick. Near the vessel, concentrations of the signaling molecule are reinforced by the lymphatic’s own secretions, fine tuning the tumor cells’ migration and guaranteeing that they will home in on the lymphatic.

... more about:
»Migrate »lymphatic »tumor cells »vessel

To demonstrate this new concept, the researchers engineered a tissue culture model of the tumor-lymphatic microenvironment and developed computational models to calculate the gradients of the signaling molecule.

The study provides the first evidence that tumor cells can both produce and use the same signaling molecule, and it highlights the significance of the biophysical environment in the vicinity of a tumor, particularly the existence of continuous slow flow in the direction of functional lymphatics.

This research could open new avenues for combating metastasis, says Swartz. “It implies that if a lymphatic was blocked, tumor cells would be less attracted to it. This means that tumor cells “know” which lymphatic vessels will be more effective routes for dissemination,” she explains. “Therapeutically, it indicates that a drug target for lymph node metastases could be blocking the signaling molecule or its receptor on the tumor cell.”

Melody Swartz | EurekAlert!
Further information:
http://www.epfl.ch

Further reports about: Migrate lymphatic tumor cells vessel

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>