Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migration alert -- How tumor cells home in on the lymphatic system

12.06.2007
A Swiss-based research team has published a new mechanistic description of how tumor cells migrate to the lymphatic system in the early stages of tumor metastasis. This new understanding holds significant potential for developing anti-metastasis therapies.

Scientists know that tumor cells spread via the lymphatic system, but they don’t understand the details of how this deadly migration takes place. In the June 2007 issue of the journal Cancer Cell, EPFL Professor Melody Swartz and postdoctoral researcher Jacqueline Shields provide an explanation along with data to support it.

Tumors produce excess fluid that continually percolates from the tumor towards nearby lymphatic vessels. The EPFL research shows how tumor cells use a clever chemical strategy to exploit this slow, one-way flow in order to migrate to functional lymphatic vessels.

As part of their intercellular drainage job, lymphatic tissues secrete small quantities of a signaling molecule. Cells migrate towards high concentrations of this molecule, so if they are close enough to the lymphatic to sense the molecule, they will migrate towards the vessel. Swartz’s group showed that tumor cells secrete this same molecule. Since lymphatics drain fluid, there will always be slow fluid flow going away from the tumor into the lymphatic vessel. This slow flow biases the concentration distribution of this molecule towards the lymphatic, and the tumor cell follows it, like the proverbial carrot on a stick. Near the vessel, concentrations of the signaling molecule are reinforced by the lymphatic’s own secretions, fine tuning the tumor cells’ migration and guaranteeing that they will home in on the lymphatic.

... more about:
»Migrate »lymphatic »tumor cells »vessel

To demonstrate this new concept, the researchers engineered a tissue culture model of the tumor-lymphatic microenvironment and developed computational models to calculate the gradients of the signaling molecule.

The study provides the first evidence that tumor cells can both produce and use the same signaling molecule, and it highlights the significance of the biophysical environment in the vicinity of a tumor, particularly the existence of continuous slow flow in the direction of functional lymphatics.

This research could open new avenues for combating metastasis, says Swartz. “It implies that if a lymphatic was blocked, tumor cells would be less attracted to it. This means that tumor cells “know” which lymphatic vessels will be more effective routes for dissemination,” she explains. “Therapeutically, it indicates that a drug target for lymph node metastases could be blocking the signaling molecule or its receptor on the tumor cell.”

Melody Swartz | EurekAlert!
Further information:
http://www.epfl.ch

Further reports about: Migrate lymphatic tumor cells vessel

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>