Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain activity reflects differences in types of anxiety

30.05.2007
All anxiety is not created equal, and a research team at the University of Illinois now has the data to prove it. The team has found the most compelling evidence yet of differing patterns of brain activity associated with each of two types of anxiety: anxious apprehension (verbal rumination, worry) and anxious arousal (intense fear, panic, or both).

Their work appears this month online in Psychophysiology.

"This study looks at two facets of anxiety that often are not distinguished," said U. of I. psychology professor Gregory A. Miller, co-principal investigator on the study with psychology professor Wendy Heller. "We had reason to think there were different brain mechanisms, different parts of the brain active at different times, depending on what type of anxiety one is facing."

According to a recent national survey, anxiety disorders are the most commonly reported psychiatric disorders in the U.S. The Diagnostic and Statistical Manual of Mental Disorders classifies nearly a dozen different anxiety disorders, from acute stress disorder to obsessive-compulsive disorder to panic attack and PTSD. But those who study and treat patients with anxiety disorders do not always differentiate the patients who worry, fret and ruminate from those who experience the panic, rapid heartbeat or bouts of sweating that characterize anxious arousal. These two kinds of anxiety may occur alone or in combination, with potentially important implications for treatment.

To test whether neural activation patterns supported the hypothesis that these two categories of anxiety are distinct, the researchers selected 42 subjects from a pool of 1,099 undergraduate college students, using psychological tests to categorize them as "high anxious apprehension," "high anxious arousal," or neither.

Other psychological assessments standardized the pool of participants by removing those with mood disorders or other complicating factors.

The researchers used functional Magnetic Resonance Imaging (fMRI) to map the brain areas with heightened neural activity during a variety of psychological probes.

As the researchers had predicted, the anxious apprehension group exhibited enhanced left-brain activity and the anxious arousal group had heightened activity in the right brain. The anxious apprehension group showed increased activity in a region of the left inferior frontal lobe that is associated with speech production. The anxious arousal group had more activity in a region of the right-hemisphere inferior temporal lobe that is believed to be involved in tracking and responding to information signaling danger.

Other studies using electroencephalographic (EEG) methods had found that patients diagnosed with generalized anxiety disorder and obsessive-compulsive disorder had heightened activity in the left brain, whereas patients with panic disorder, panic symptoms or those subjected to high stress situations exhibited enhanced activity in the right hemisphere.

This is the first study, however, to localize the affected regions to identify areas within each hemisphere that seem to matter.

Miller stressed the importance of a related finding: The researchers distinguished the left-brain region involved in anxious apprehension from a nearby structure that is associated with positive emotional processing.

"Left and right is not the only distinction we made," Miller said.
"We did left/right comparisons with groups, but we also did comparisons within the left hemisphere to show that these different areas are doing different things."

"This is biological validation of the proposal of the psychological differentiation of types of anxiety," Miller said. "Whether you want to treat anxiety psychologically or biologically - and we know that either type of intervention affects both the psychology and the biology of the person - these findings are a reminder that you might want to assess people carefully before you embark on a particular type of treatment."

This research is based on a master's thesis submitted by graduate student Anna S. Engels to the U. of I. The work was supported primarily by the National Institute of Mental Health and also by the National Institute on Drug Abuse, both at the National Institutes of Health. Support also was provided by the Beckman Institute, the department of psychology and the Intercampus Research Initiative on Biotechnology at the U. of I.

Miller is affiliated with the Beckman Institute; the department of psychology and the Neuroscience Program in the College of Liberal Arts and Sciences; and the department of psychiatry in the College of Medicine.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Psychology activity anxious apprehension psychological

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>