Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain activity reflects differences in types of anxiety

30.05.2007
All anxiety is not created equal, and a research team at the University of Illinois now has the data to prove it. The team has found the most compelling evidence yet of differing patterns of brain activity associated with each of two types of anxiety: anxious apprehension (verbal rumination, worry) and anxious arousal (intense fear, panic, or both).

Their work appears this month online in Psychophysiology.

"This study looks at two facets of anxiety that often are not distinguished," said U. of I. psychology professor Gregory A. Miller, co-principal investigator on the study with psychology professor Wendy Heller. "We had reason to think there were different brain mechanisms, different parts of the brain active at different times, depending on what type of anxiety one is facing."

According to a recent national survey, anxiety disorders are the most commonly reported psychiatric disorders in the U.S. The Diagnostic and Statistical Manual of Mental Disorders classifies nearly a dozen different anxiety disorders, from acute stress disorder to obsessive-compulsive disorder to panic attack and PTSD. But those who study and treat patients with anxiety disorders do not always differentiate the patients who worry, fret and ruminate from those who experience the panic, rapid heartbeat or bouts of sweating that characterize anxious arousal. These two kinds of anxiety may occur alone or in combination, with potentially important implications for treatment.

To test whether neural activation patterns supported the hypothesis that these two categories of anxiety are distinct, the researchers selected 42 subjects from a pool of 1,099 undergraduate college students, using psychological tests to categorize them as "high anxious apprehension," "high anxious arousal," or neither.

Other psychological assessments standardized the pool of participants by removing those with mood disorders or other complicating factors.

The researchers used functional Magnetic Resonance Imaging (fMRI) to map the brain areas with heightened neural activity during a variety of psychological probes.

As the researchers had predicted, the anxious apprehension group exhibited enhanced left-brain activity and the anxious arousal group had heightened activity in the right brain. The anxious apprehension group showed increased activity in a region of the left inferior frontal lobe that is associated with speech production. The anxious arousal group had more activity in a region of the right-hemisphere inferior temporal lobe that is believed to be involved in tracking and responding to information signaling danger.

Other studies using electroencephalographic (EEG) methods had found that patients diagnosed with generalized anxiety disorder and obsessive-compulsive disorder had heightened activity in the left brain, whereas patients with panic disorder, panic symptoms or those subjected to high stress situations exhibited enhanced activity in the right hemisphere.

This is the first study, however, to localize the affected regions to identify areas within each hemisphere that seem to matter.

Miller stressed the importance of a related finding: The researchers distinguished the left-brain region involved in anxious apprehension from a nearby structure that is associated with positive emotional processing.

"Left and right is not the only distinction we made," Miller said.
"We did left/right comparisons with groups, but we also did comparisons within the left hemisphere to show that these different areas are doing different things."

"This is biological validation of the proposal of the psychological differentiation of types of anxiety," Miller said. "Whether you want to treat anxiety psychologically or biologically - and we know that either type of intervention affects both the psychology and the biology of the person - these findings are a reminder that you might want to assess people carefully before you embark on a particular type of treatment."

This research is based on a master's thesis submitted by graduate student Anna S. Engels to the U. of I. The work was supported primarily by the National Institute of Mental Health and also by the National Institute on Drug Abuse, both at the National Institutes of Health. Support also was provided by the Beckman Institute, the department of psychology and the Intercampus Research Initiative on Biotechnology at the U. of I.

Miller is affiliated with the Beckman Institute; the department of psychology and the Neuroscience Program in the College of Liberal Arts and Sciences; and the department of psychiatry in the College of Medicine.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Psychology activity anxious apprehension psychological

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>