Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New perspective on brain function now possible

29.05.2007
A newly started research collaboration between Karolinska Institutet and AstraZeneca has already generated results. For the first time, the conditions have been created to study one of the brain's most important neurotransmission systems – the glutamate system – in living people.

Glutamate is one of the most common neurotransmitters in the human brain and is involved in virtually all brain functions. But even though researchers' PET cameras can produce images of other important neurotransmission systems, such as the dopamine and serotonin systems, until now it has not been possible to capture images of the glutamate system. This is because there has not been any suitable tracer that can bind specifically to the receptors in the glutamate system.

In collaboration with Karolinska Institutet, AstraZeneca has now developed such a tracer, which makes it possible for the first time to study the glutamate system in the brains of living people.

"The glutamate system is an area of keen interest for research, especially for gaining an understanding of neuropsychiatric disorders," says Professor Lars Farde at Karolinska Institutet and AstraZeneca. "All anti-psychotic medicines currently available on the market work via the dopamine system, for example. However, it may well turn out that glutamate receptors are even better drug targets."

Within the framework of this same collaboration, a state-of-the-art PET camera has been purchased for use in both academic research and pharmaceutical development.

"The new PET camera will allow us to study the brain with a much higher richness of detail than previously," comments Professor Christer Halldin of Karolinska Institutet. "And thanks to the new tracer, we will be able to explore an entirely new neurotransmission system through high-resolution imaging."

Sabina Bossi | alfa
Further information:
http://www.ki.se

Further reports about: Karolinska Institutet glutamate possible

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>