Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New perspective on brain function now possible

29.05.2007
A newly started research collaboration between Karolinska Institutet and AstraZeneca has already generated results. For the first time, the conditions have been created to study one of the brain's most important neurotransmission systems – the glutamate system – in living people.

Glutamate is one of the most common neurotransmitters in the human brain and is involved in virtually all brain functions. But even though researchers' PET cameras can produce images of other important neurotransmission systems, such as the dopamine and serotonin systems, until now it has not been possible to capture images of the glutamate system. This is because there has not been any suitable tracer that can bind specifically to the receptors in the glutamate system.

In collaboration with Karolinska Institutet, AstraZeneca has now developed such a tracer, which makes it possible for the first time to study the glutamate system in the brains of living people.

"The glutamate system is an area of keen interest for research, especially for gaining an understanding of neuropsychiatric disorders," says Professor Lars Farde at Karolinska Institutet and AstraZeneca. "All anti-psychotic medicines currently available on the market work via the dopamine system, for example. However, it may well turn out that glutamate receptors are even better drug targets."

Within the framework of this same collaboration, a state-of-the-art PET camera has been purchased for use in both academic research and pharmaceutical development.

"The new PET camera will allow us to study the brain with a much higher richness of detail than previously," comments Professor Christer Halldin of Karolinska Institutet. "And thanks to the new tracer, we will be able to explore an entirely new neurotransmission system through high-resolution imaging."

Sabina Bossi | alfa
Further information:
http://www.ki.se

Further reports about: Karolinska Institutet glutamate possible

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>