Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique will produce a better chromosome map

09.05.2007
Researchers at the University of Illinois have developed a simple and economical technique for imaging and mapping fruit fly chromosomes. This new approach will enable them to construct the first accurate map of the chromosomes and tease out the secrets hidden in their stripes.

Their work appears online May 6 in advance of publication in the journal Nature Methods.

Fruit flies are well suited for chromosome studies because some of their cells contain gigantic, “polytene” chromosomes, each built up of more than 1,000 parallel copies of DNA strands. When stained, condensed, dark bands and lighter regions (interbands) give the chromosomes a striped appearance.

For more than 70 years, cytogeneticists have used a hand-drawn map of the bands of fruit fly polytene chromosomes, with the shape and location of these structures only vaguely delineated. This map, first published in 1935, and generations of light and electron micrographs have yielded an imprecise guide to the chromosomes.

... more about:
»Chromosome »MAP »structure »technique

Traditional methods of chromosome preparation have limited usefulness for those hoping to sort out how the bands and interbands relate to the underlying genetic sequence, said cell and developmental biology research specialist Dmitri Novikov, who developed the new technique. The genome of the fruit fly, Drosophila melanogaster, was sequenced in 2000, and yet its relationship to chromosome structure remains unclear.

“Since we want to know what genes are involved in the development of different structures in living systems, this is the first structure to look at,” Novikov said. “This is the starting point: the appearance of the genes themselves.”

Cell and developmental biology professor and lead investigator Andrew S. Belmont and visiting scientist Igor Kireev, of Moscow State University, are co-authors on the paper. Belmont is in the U. of I. Institute for Genomic Biology and the Center for Biophysics and Computational Biology.

Current methods for preparing polytene cells for viewing under a light microscope involve using a thumb, pencil, forceps or other instrument to maneuver and press the cells between a glass coverslip and slide. Only about 10 percent of the slides processed this way provide useable images and even those rarely offer crisp structural details, Novikov said.

The new approach includes two components: the use of mechanical devices to spread and flatten the cells, and the application of computer-based image processing to analyze hundreds of examples of the same chromosomes. With so many crisp images to analyze, computer algorithms can accurately calculate the number, shape and location of the chromosome bands.

“Two researchers might see the same image differently,” said graduate research assistant Mert Dikmen, who uses computer vision technologies under the supervision of Beckman Institute professor Thomas Huang to analyze the images. “Our system will give an impartial estimate of the band location. It will not be researcher-dependent. It will be objective.”

To improve chromosome spreading, researchers use a rotary tool that vibrates the coverslip surface for several minutes. A simple mechanical vise applies up to two tons of force to each slide, rendering the preparations very thin and high in contrast. This allows the production of much clearer, information-packed images.

The technique has other advantages: Because it relies on light microscopy, it is faster and more economical than electron microscopy, with comparable or superior results.

With a more accurate chromosome map, researchers will next use fluorescent immunostaining of proteins that bind to specific DNA sequences. These landmarks will help them tease out the relationship of the sequence to the physical structure.

The new approach will allow scientists to answer fundamental questions about chromosome structure, Novikov said. Such questions have relevance across species.

Editor’s note: To reach, call 217-333-8372; e-mail: novikov@uiuc.edu.

Diana Yates | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: Chromosome MAP structure technique

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>