Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique will produce a better chromosome map

09.05.2007
Researchers at the University of Illinois have developed a simple and economical technique for imaging and mapping fruit fly chromosomes. This new approach will enable them to construct the first accurate map of the chromosomes and tease out the secrets hidden in their stripes.

Their work appears online May 6 in advance of publication in the journal Nature Methods.

Fruit flies are well suited for chromosome studies because some of their cells contain gigantic, “polytene” chromosomes, each built up of more than 1,000 parallel copies of DNA strands. When stained, condensed, dark bands and lighter regions (interbands) give the chromosomes a striped appearance.

For more than 70 years, cytogeneticists have used a hand-drawn map of the bands of fruit fly polytene chromosomes, with the shape and location of these structures only vaguely delineated. This map, first published in 1935, and generations of light and electron micrographs have yielded an imprecise guide to the chromosomes.

... more about:
»Chromosome »MAP »structure »technique

Traditional methods of chromosome preparation have limited usefulness for those hoping to sort out how the bands and interbands relate to the underlying genetic sequence, said cell and developmental biology research specialist Dmitri Novikov, who developed the new technique. The genome of the fruit fly, Drosophila melanogaster, was sequenced in 2000, and yet its relationship to chromosome structure remains unclear.

“Since we want to know what genes are involved in the development of different structures in living systems, this is the first structure to look at,” Novikov said. “This is the starting point: the appearance of the genes themselves.”

Cell and developmental biology professor and lead investigator Andrew S. Belmont and visiting scientist Igor Kireev, of Moscow State University, are co-authors on the paper. Belmont is in the U. of I. Institute for Genomic Biology and the Center for Biophysics and Computational Biology.

Current methods for preparing polytene cells for viewing under a light microscope involve using a thumb, pencil, forceps or other instrument to maneuver and press the cells between a glass coverslip and slide. Only about 10 percent of the slides processed this way provide useable images and even those rarely offer crisp structural details, Novikov said.

The new approach includes two components: the use of mechanical devices to spread and flatten the cells, and the application of computer-based image processing to analyze hundreds of examples of the same chromosomes. With so many crisp images to analyze, computer algorithms can accurately calculate the number, shape and location of the chromosome bands.

“Two researchers might see the same image differently,” said graduate research assistant Mert Dikmen, who uses computer vision technologies under the supervision of Beckman Institute professor Thomas Huang to analyze the images. “Our system will give an impartial estimate of the band location. It will not be researcher-dependent. It will be objective.”

To improve chromosome spreading, researchers use a rotary tool that vibrates the coverslip surface for several minutes. A simple mechanical vise applies up to two tons of force to each slide, rendering the preparations very thin and high in contrast. This allows the production of much clearer, information-packed images.

The technique has other advantages: Because it relies on light microscopy, it is faster and more economical than electron microscopy, with comparable or superior results.

With a more accurate chromosome map, researchers will next use fluorescent immunostaining of proteins that bind to specific DNA sequences. These landmarks will help them tease out the relationship of the sequence to the physical structure.

The new approach will allow scientists to answer fundamental questions about chromosome structure, Novikov said. Such questions have relevance across species.

Editor’s note: To reach, call 217-333-8372; e-mail: novikov@uiuc.edu.

Diana Yates | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: Chromosome MAP structure technique

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>