Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key Found to Kill Cystic Fibrosis Superbug

25.04.2007
Researchers from the Schulich School of Medicine & Dentistry at The University of Western Ontario , working with a group from Edinburgh, have discovered a way to kill the cystic fibrosis superbug, Burkholderia cenocepacia.

These investigators, under the leadership of Dr. Miguel Valvano, Department of Microbiology and Immunology, have had their research published in the May issue of the Journal of Bacteriology, and highlighted in Nature Reviews/Microbiology.

B. cenocepacia is a multi-drug resistant microorganism that lives in damp or wet places and causes rot in plants such as onions. While it rarely causes infection in healthy people, it can be fatal for people with cystic fibrosis (CF), an inherited disease where the lungs become clogged with thick mucus, often leading to chronic respiratory infections.

The team of researchers has identified a weakness in the armour that protects the B. cenocepacia bacterium from the effects of antibiotics. They hypothesize that preventing the synthesis of a key sugar required for this armour, 4-amino-4-deoxy-L-arabinose (Ara4N), may lead to a susceptibility within the cell membrane to antibiotics.

... more about:
»antibiotic »cystic »fibrosis

"We are very excited with these findings, as they will let us come up with novel molecules to disrupt the making of Ara4N," says Valvano. "These molecules could then be tested as novel antibiotics." Valvano is a Professor and Chair of the Department of Microbiology and Immunology, a Canada Research Chair in Infectious Diseases and Microbial Pathogenesis, and leader of the Infectious Diseases Research Group at the Siebens-Drake Research Institute. He is available for interviews.

The research was funded through the Canadian Cystic Fibrosis Foundation and the Canadian Institutes of Health Research (CIHR). "We're delighted by this news," says Cathleen Morrison, CEO of the Canadian Cystic Fibrosis Foundation. "The possibility of a life-saving antibiotic to fight B. cenocepacia is tremendously encouraging to adults and children who have cystic fibrosis."

Dr. Bhagirath Singh, Scientific Director of the CIHR Institute of Infection and Immunity, says "This discovery provides new hope for the eradication of these bugs from cystic fibrosis patients and to improve their quality of life by developing new treatments."

Contacts:
Kathy Wallis,
Media Relations Officer, Schulich School of Medicine & Dentistry
The University of Western Ontario,
519-661-2111 Ext. 81136, Kathy.wallis@schulich.uwo.ca
Sagal Ali
Media Relations Officer
Canadian Cystic Fibrosis Foundation
1-800-378-2233 ext. 290
sali@cysticfibrosis.ca
David Coulombe
CIHR Media Specialist
Office: 613-941-4563
Mobile: 613-808-7526
mediarelations@cihr-irsc.gc.ca

Kathy Wallis | EurekAlert!
Further information:
http://www.cysticfibrosis.ca
http://www.cihr-irsc.gc.ca

Further reports about: antibiotic cystic fibrosis

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>