Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key Found to Kill Cystic Fibrosis Superbug

25.04.2007
Researchers from the Schulich School of Medicine & Dentistry at The University of Western Ontario , working with a group from Edinburgh, have discovered a way to kill the cystic fibrosis superbug, Burkholderia cenocepacia.

These investigators, under the leadership of Dr. Miguel Valvano, Department of Microbiology and Immunology, have had their research published in the May issue of the Journal of Bacteriology, and highlighted in Nature Reviews/Microbiology.

B. cenocepacia is a multi-drug resistant microorganism that lives in damp or wet places and causes rot in plants such as onions. While it rarely causes infection in healthy people, it can be fatal for people with cystic fibrosis (CF), an inherited disease where the lungs become clogged with thick mucus, often leading to chronic respiratory infections.

The team of researchers has identified a weakness in the armour that protects the B. cenocepacia bacterium from the effects of antibiotics. They hypothesize that preventing the synthesis of a key sugar required for this armour, 4-amino-4-deoxy-L-arabinose (Ara4N), may lead to a susceptibility within the cell membrane to antibiotics.

... more about:
»antibiotic »cystic »fibrosis

"We are very excited with these findings, as they will let us come up with novel molecules to disrupt the making of Ara4N," says Valvano. "These molecules could then be tested as novel antibiotics." Valvano is a Professor and Chair of the Department of Microbiology and Immunology, a Canada Research Chair in Infectious Diseases and Microbial Pathogenesis, and leader of the Infectious Diseases Research Group at the Siebens-Drake Research Institute. He is available for interviews.

The research was funded through the Canadian Cystic Fibrosis Foundation and the Canadian Institutes of Health Research (CIHR). "We're delighted by this news," says Cathleen Morrison, CEO of the Canadian Cystic Fibrosis Foundation. "The possibility of a life-saving antibiotic to fight B. cenocepacia is tremendously encouraging to adults and children who have cystic fibrosis."

Dr. Bhagirath Singh, Scientific Director of the CIHR Institute of Infection and Immunity, says "This discovery provides new hope for the eradication of these bugs from cystic fibrosis patients and to improve their quality of life by developing new treatments."

Contacts:
Kathy Wallis,
Media Relations Officer, Schulich School of Medicine & Dentistry
The University of Western Ontario,
519-661-2111 Ext. 81136, Kathy.wallis@schulich.uwo.ca
Sagal Ali
Media Relations Officer
Canadian Cystic Fibrosis Foundation
1-800-378-2233 ext. 290
sali@cysticfibrosis.ca
David Coulombe
CIHR Media Specialist
Office: 613-941-4563
Mobile: 613-808-7526
mediarelations@cihr-irsc.gc.ca

Kathy Wallis | EurekAlert!
Further information:
http://www.cysticfibrosis.ca
http://www.cihr-irsc.gc.ca

Further reports about: antibiotic cystic fibrosis

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>