Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquito genes explain response to climate change

25.04.2007
UO team forges first chromosomal map of genes linked to seasonal response to day length

University of Oregon researchers studying mosquitoes have produced the first chromosomal map that shows regions of chromosomes that activate – and are apparently evolving – in animals in response to climate change.

The map will allow researchers to narrow their focus to identify specific genes that control the seasonal development of animals. Such information will help predict which animals may survive in changing climates and identify which disease-carrying vectors may move northward, allowing for the production of appropriate vaccines, said William E. Bradshaw and Christina M. Holzapfel, researchers in the department of biology and members of the UO Center for Ecology and Evolutionary Biology.

"For the first time, we are moving down the track to identify genes that animals use to control their seasonal development," Bradshaw said. "Response to day length is often the primary cue that organisms use for going dormant, and although human beings are not as strongly seasonal as other animals, there are nonetheless seasonal components to our health and welfare just as there are in plants and animals."

... more about:
»Bradshaw »Climate »chromosomal »mosquito »seasonal

The chromosomal map for the mosquito Wyeomyia smithii, which develop within the carnivorous leaves of pitcher plants, appears online ahead of publication in the May issue of the journal Genetics. The UO researchers identified regions on three chromosomes that respond to length of day, which scientists call photoperiodism. Two of the chromosomes also have overlapping gene expression that tells the species to go dormant, which they must do to survive.

"This chromosomal map is drawing a lot of interest in terms of understanding the genetic response of animals to rapid climate change and also to understanding the metabolic processes involved in disease intervention in humans and other complex organisms," Holzapfel said.

Bradshaw and Holzapfel first showed that the mosquito has changed genetically in response to recent, rapid climate change and now uses shorter, more southern day lengths to initiate dormancy in a landmark study that appeared in the Proceedings of the National Academy of Sciences (Dec. 4, 2001).

The new study – funded by the National Science Foundation and National Institutes of Health – doesn’t tell exactly which genes drive the mosquito’s response, "but it does tell us in what parts of the genome we must look to identify the mechanism of photoperiodism," Bradshaw said. Collaborative studies already are underway to determine the same genes in stickleback fish at the UO and in fruit flies at the University of Pennsylvania.

"The response to climate warming in animal populations has penetrated to the level of the gene," Bradshaw said. "It affects development, reproduction and dormancy, and this response is occurring in diverse groups of animals from insects to birds and mammals."

The chromosomal map was created using mosquitoes that had developed in precisely controlled environmental rooms that allow the UO researchers to simulate climatic conditions occurring in nature anywhere in the world, from the tropics to the polar regions.

The newly created map contains 900 million DNA base pairs. There are three billion base pairs in humans. As various genome maps are being completed, scientists now face the task of determining how genes interact and how they produce specific phenotypes (observable traits), which include photoperiodic response and dormancy.

"Climate changes already are extending the growing seasons," Holzapfel said. "We know that portions of the country are becoming warmer and dryer than others. Plants and animals are not confronting this stress directly, but rather they are flowering, reproducing and going dormant at different times of the year than they used to. Many species will be unable to change quickly enough and will become extinct."

"Climate change will change the seasonal ecology of many animals," Bradshaw said. "Rather than having a bully coming to beat you up at recess everyday, you can take a body-building course and beat up the bully, or you simply can take recess at a different time. Many organisms are taking the latter course, using day length to guide them."

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu/~mosquito/

Further reports about: Bradshaw Climate chromosomal mosquito seasonal

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>