Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquito genes explain response to climate change

25.04.2007
UO team forges first chromosomal map of genes linked to seasonal response to day length

University of Oregon researchers studying mosquitoes have produced the first chromosomal map that shows regions of chromosomes that activate – and are apparently evolving – in animals in response to climate change.

The map will allow researchers to narrow their focus to identify specific genes that control the seasonal development of animals. Such information will help predict which animals may survive in changing climates and identify which disease-carrying vectors may move northward, allowing for the production of appropriate vaccines, said William E. Bradshaw and Christina M. Holzapfel, researchers in the department of biology and members of the UO Center for Ecology and Evolutionary Biology.

"For the first time, we are moving down the track to identify genes that animals use to control their seasonal development," Bradshaw said. "Response to day length is often the primary cue that organisms use for going dormant, and although human beings are not as strongly seasonal as other animals, there are nonetheless seasonal components to our health and welfare just as there are in plants and animals."

... more about:
»Bradshaw »Climate »chromosomal »mosquito »seasonal

The chromosomal map for the mosquito Wyeomyia smithii, which develop within the carnivorous leaves of pitcher plants, appears online ahead of publication in the May issue of the journal Genetics. The UO researchers identified regions on three chromosomes that respond to length of day, which scientists call photoperiodism. Two of the chromosomes also have overlapping gene expression that tells the species to go dormant, which they must do to survive.

"This chromosomal map is drawing a lot of interest in terms of understanding the genetic response of animals to rapid climate change and also to understanding the metabolic processes involved in disease intervention in humans and other complex organisms," Holzapfel said.

Bradshaw and Holzapfel first showed that the mosquito has changed genetically in response to recent, rapid climate change and now uses shorter, more southern day lengths to initiate dormancy in a landmark study that appeared in the Proceedings of the National Academy of Sciences (Dec. 4, 2001).

The new study – funded by the National Science Foundation and National Institutes of Health – doesn’t tell exactly which genes drive the mosquito’s response, "but it does tell us in what parts of the genome we must look to identify the mechanism of photoperiodism," Bradshaw said. Collaborative studies already are underway to determine the same genes in stickleback fish at the UO and in fruit flies at the University of Pennsylvania.

"The response to climate warming in animal populations has penetrated to the level of the gene," Bradshaw said. "It affects development, reproduction and dormancy, and this response is occurring in diverse groups of animals from insects to birds and mammals."

The chromosomal map was created using mosquitoes that had developed in precisely controlled environmental rooms that allow the UO researchers to simulate climatic conditions occurring in nature anywhere in the world, from the tropics to the polar regions.

The newly created map contains 900 million DNA base pairs. There are three billion base pairs in humans. As various genome maps are being completed, scientists now face the task of determining how genes interact and how they produce specific phenotypes (observable traits), which include photoperiodic response and dormancy.

"Climate changes already are extending the growing seasons," Holzapfel said. "We know that portions of the country are becoming warmer and dryer than others. Plants and animals are not confronting this stress directly, but rather they are flowering, reproducing and going dormant at different times of the year than they used to. Many species will be unable to change quickly enough and will become extinct."

"Climate change will change the seasonal ecology of many animals," Bradshaw said. "Rather than having a bully coming to beat you up at recess everyday, you can take a body-building course and beat up the bully, or you simply can take recess at a different time. Many organisms are taking the latter course, using day length to guide them."

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu/~mosquito/

Further reports about: Bradshaw Climate chromosomal mosquito seasonal

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>