Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquito genes explain response to climate change

25.04.2007
UO team forges first chromosomal map of genes linked to seasonal response to day length

University of Oregon researchers studying mosquitoes have produced the first chromosomal map that shows regions of chromosomes that activate – and are apparently evolving – in animals in response to climate change.

The map will allow researchers to narrow their focus to identify specific genes that control the seasonal development of animals. Such information will help predict which animals may survive in changing climates and identify which disease-carrying vectors may move northward, allowing for the production of appropriate vaccines, said William E. Bradshaw and Christina M. Holzapfel, researchers in the department of biology and members of the UO Center for Ecology and Evolutionary Biology.

"For the first time, we are moving down the track to identify genes that animals use to control their seasonal development," Bradshaw said. "Response to day length is often the primary cue that organisms use for going dormant, and although human beings are not as strongly seasonal as other animals, there are nonetheless seasonal components to our health and welfare just as there are in plants and animals."

... more about:
»Bradshaw »Climate »chromosomal »mosquito »seasonal

The chromosomal map for the mosquito Wyeomyia smithii, which develop within the carnivorous leaves of pitcher plants, appears online ahead of publication in the May issue of the journal Genetics. The UO researchers identified regions on three chromosomes that respond to length of day, which scientists call photoperiodism. Two of the chromosomes also have overlapping gene expression that tells the species to go dormant, which they must do to survive.

"This chromosomal map is drawing a lot of interest in terms of understanding the genetic response of animals to rapid climate change and also to understanding the metabolic processes involved in disease intervention in humans and other complex organisms," Holzapfel said.

Bradshaw and Holzapfel first showed that the mosquito has changed genetically in response to recent, rapid climate change and now uses shorter, more southern day lengths to initiate dormancy in a landmark study that appeared in the Proceedings of the National Academy of Sciences (Dec. 4, 2001).

The new study – funded by the National Science Foundation and National Institutes of Health – doesn’t tell exactly which genes drive the mosquito’s response, "but it does tell us in what parts of the genome we must look to identify the mechanism of photoperiodism," Bradshaw said. Collaborative studies already are underway to determine the same genes in stickleback fish at the UO and in fruit flies at the University of Pennsylvania.

"The response to climate warming in animal populations has penetrated to the level of the gene," Bradshaw said. "It affects development, reproduction and dormancy, and this response is occurring in diverse groups of animals from insects to birds and mammals."

The chromosomal map was created using mosquitoes that had developed in precisely controlled environmental rooms that allow the UO researchers to simulate climatic conditions occurring in nature anywhere in the world, from the tropics to the polar regions.

The newly created map contains 900 million DNA base pairs. There are three billion base pairs in humans. As various genome maps are being completed, scientists now face the task of determining how genes interact and how they produce specific phenotypes (observable traits), which include photoperiodic response and dormancy.

"Climate changes already are extending the growing seasons," Holzapfel said. "We know that portions of the country are becoming warmer and dryer than others. Plants and animals are not confronting this stress directly, but rather they are flowering, reproducing and going dormant at different times of the year than they used to. Many species will be unable to change quickly enough and will become extinct."

"Climate change will change the seasonal ecology of many animals," Bradshaw said. "Rather than having a bully coming to beat you up at recess everyday, you can take a body-building course and beat up the bully, or you simply can take recess at a different time. Many organisms are taking the latter course, using day length to guide them."

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu/~mosquito/

Further reports about: Bradshaw Climate chromosomal mosquito seasonal

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>