Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antioxidant found in many foods and red wine is potent and selective killer of leukemia cells

25.04.2007
University of Pittsburgh researchers show compound kills leukemia cells while sparing normal, healthy cells

A naturally occurring compound found in many fruits and vegetables as well as red wine, selectively kills leukemia cells in culture while showing no discernible toxicity against healthy cells, according to a study by researchers at the University of Pittsburgh School of Medicine. These findings, which were published online March 20 in the Journal of Biological Chemistry and will be in press on May 4, offer hope for a more selective, less toxic therapy for leukemia.

“Current treatments for leukemia, such as chemotherapy and radiation, often damage healthy cells and tissues and can produce unwanted side effects for many years afterward. So, there is an intensive search for more targeted therapies for leukemia worldwide,” said corresponding author Xiao-Ming Yin, M.D., Ph.D., associate professor of pathology, University of Pittsburgh School of Medicine.

Leukemia is not a single disease but a number of related cancers that start in the blood-forming cells of the bone marrow. Meaning literally “white blood” in Greek, leukemia occurs when there is an excess of abnormal white blood cells. There are both acute and chronic forms of leukemia, each with many subtypes that vary in their response to treatment. According to the National Cancer Institute, about 44,000 new leukemia cases will be diagnosed in the United States in 2007, and there will be about 22,000 leukemia-related deaths.

... more about:
»C-3-R »leukemia »selective »toxic »wine

Based on previous reports that anthocyanidins, a group of naturally occurring compounds widely available in fruits and vegetables as well as red wine, have chemopreventive properties, Dr. Yin and his collaborators studied the effects and the mechanisms of the most common type of a naturally modified anthocyanidin, known as cyanidin-3-rutinoside, or C-3-R, which was extracted and purified from black raspberries, in several leukemia and lymphoma cell lines.

They found that C-3-R caused about 50 percent of a human leukemia cell line known as HL-60 to undergo programmed cell death, or apoptosis, within about 18 hours of treatment at low doses. When they more than doubled the concentration of C-3-R, virtually all of the leukemia cells became apoptotic and died. C-3-R also induced apoptosis in other human leukemia and lymphoma cell lines.

When the investigators studied the mechanism of cell death in the leukemia cells, they found that C-3-R induced the accumulation of peroxides, a highly reactive form of oxygen, which, in turn, activated a mitochondria-mediated apoptotic pathway. Mitochondria are specialized structures located within all cells in the body that contain enzymes needed by the cell to metabolize foodstuffs into energy sources. In contrast, when the researchers treated normal human blood cells with C-3-R, they did not find any increased accumulation of reactive oxygen species and there were no apparent toxic effects on these cells.

Previous studies have shown that C-3-R possesses strong antioxidant activities, a characteristic shared by other polyphenols, such as those found in green tea, which could be responsible for their chemoprevention effects. Dr. Yin’s work suggests that although C-3-R demonstrates antioxidant effects in the normal cells, it paradoxically induces an oxidative “stress” in the tumor cells. It is possible that this differential effect of C-3-R may account for its selective toxicity in the tumor cells.

According to Dr. Yin, these results indicate that C-3-R has the promising potential to be used in leukemia therapy with the advantages of being highly selective against cancer cells. “Because this compound is widely available in foods, it is very likely that it is not toxic even in purified form. Therefore, if we can reproduce these anti-cancer effects in animal studies, this will present a very promising approach for treating a variety of human leukemias and, perhaps, lymphomas as well.”

Jim Swyers | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: C-3-R leukemia selective toxic wine

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>