Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antioxidant found in many foods and red wine is potent and selective killer of leukemia cells

25.04.2007
University of Pittsburgh researchers show compound kills leukemia cells while sparing normal, healthy cells

A naturally occurring compound found in many fruits and vegetables as well as red wine, selectively kills leukemia cells in culture while showing no discernible toxicity against healthy cells, according to a study by researchers at the University of Pittsburgh School of Medicine. These findings, which were published online March 20 in the Journal of Biological Chemistry and will be in press on May 4, offer hope for a more selective, less toxic therapy for leukemia.

“Current treatments for leukemia, such as chemotherapy and radiation, often damage healthy cells and tissues and can produce unwanted side effects for many years afterward. So, there is an intensive search for more targeted therapies for leukemia worldwide,” said corresponding author Xiao-Ming Yin, M.D., Ph.D., associate professor of pathology, University of Pittsburgh School of Medicine.

Leukemia is not a single disease but a number of related cancers that start in the blood-forming cells of the bone marrow. Meaning literally “white blood” in Greek, leukemia occurs when there is an excess of abnormal white blood cells. There are both acute and chronic forms of leukemia, each with many subtypes that vary in their response to treatment. According to the National Cancer Institute, about 44,000 new leukemia cases will be diagnosed in the United States in 2007, and there will be about 22,000 leukemia-related deaths.

... more about:
»C-3-R »leukemia »selective »toxic »wine

Based on previous reports that anthocyanidins, a group of naturally occurring compounds widely available in fruits and vegetables as well as red wine, have chemopreventive properties, Dr. Yin and his collaborators studied the effects and the mechanisms of the most common type of a naturally modified anthocyanidin, known as cyanidin-3-rutinoside, or C-3-R, which was extracted and purified from black raspberries, in several leukemia and lymphoma cell lines.

They found that C-3-R caused about 50 percent of a human leukemia cell line known as HL-60 to undergo programmed cell death, or apoptosis, within about 18 hours of treatment at low doses. When they more than doubled the concentration of C-3-R, virtually all of the leukemia cells became apoptotic and died. C-3-R also induced apoptosis in other human leukemia and lymphoma cell lines.

When the investigators studied the mechanism of cell death in the leukemia cells, they found that C-3-R induced the accumulation of peroxides, a highly reactive form of oxygen, which, in turn, activated a mitochondria-mediated apoptotic pathway. Mitochondria are specialized structures located within all cells in the body that contain enzymes needed by the cell to metabolize foodstuffs into energy sources. In contrast, when the researchers treated normal human blood cells with C-3-R, they did not find any increased accumulation of reactive oxygen species and there were no apparent toxic effects on these cells.

Previous studies have shown that C-3-R possesses strong antioxidant activities, a characteristic shared by other polyphenols, such as those found in green tea, which could be responsible for their chemoprevention effects. Dr. Yin’s work suggests that although C-3-R demonstrates antioxidant effects in the normal cells, it paradoxically induces an oxidative “stress” in the tumor cells. It is possible that this differential effect of C-3-R may account for its selective toxicity in the tumor cells.

According to Dr. Yin, these results indicate that C-3-R has the promising potential to be used in leukemia therapy with the advantages of being highly selective against cancer cells. “Because this compound is widely available in foods, it is very likely that it is not toxic even in purified form. Therefore, if we can reproduce these anti-cancer effects in animal studies, this will present a very promising approach for treating a variety of human leukemias and, perhaps, lymphomas as well.”

Jim Swyers | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: C-3-R leukemia selective toxic wine

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>