Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No Solution to Cancer - Have Our Genes Evolved to Turn Against Us?

16.04.2007
Cancer is a natural consequence of human evolution. Our genes have not developed to give us long and happy lives. They are optimized to copy themselves into the next generation - irrespective of our personal desires. According to Jarle Breivik, an associate professor at the University of Oslo, Norway, we are therefore unlikely to find a final solution to cancer.

Doing research at the Institute of Basic Medical Sciences, Breivik explores the connection between cancer development and Darwinian evolution. In a recent interview with Scientific American, and the research magazine Apollon, published by the University of Oslo, he concludes that “Cancer is a fundamental consequence of the way we are made. We are temporary colonies made by our genes to propagate themselves to the next generation. The ultimate solution to cancer is that we would have to start reproducing ourselves in a different way.”

Genes that repair genes

As a medical student at the Norwegian Radium Hospital, Breivik discovered a curious phenomenon. He found that cancer cells that developed in the upper colon had other types of mutations than those found in tumours closer to the rectum. This finding was confirmed by other researchers and could be traced to mutations in particular DNA repair genes. Such genes have evolved to prevent mutations in other genes and play a vital role in defending the organism from cancer. But why do cells in the upper region of the intestine lose a different type of repair mechanism than those further down?

Breivik was determined to find an explanation. After several years of data mining and theoretical modelling, he was able to demonstrate a connection between loss of DNA repair and harmful environmental factors in the intestines. Curiously however, the cancer cells appeared to have lost the repair mechanisms that would protect them from DNA damage in their particular environment. Breivik thus proposed the following hypothesis: Although DNA repair is favourable to the organism; it may not be favourable to the individual cell. The theory was developed in several science papers, including an invited Commentary in the Proceedings of the National Academy of Sciences USA, and may be illustrated as the effect of alternative strategies in a car race (figure 1).

“Deciding when to stop for repairs and when to keep on going is a difficult challenge. Making repairs assures an optimized vehicle, but it also consumes valuable time and resources. At first thought, it may seem obvious that a damaging environment calls for more repair. Paradoxically, however, the effect may be exactly the opposite. Imagine that you are racing through a war zone with constant bombardment. Stopping for repair can then be a fatal strategy, and it is better to keep on going with flat tires and a screaming engine than to stop for repairs,” says Breivik.

This illustration thus explains why genetically unstable cancer cells are favoured in hostile environments—such as in the lungs of a heavy smoker. The model may also be described mathematically and has been experimentally confirmed in cell cultures and animal models by leading research groups in the field.

“Cells exposed to particular carcinogens die if they have the relevant repair mechanism, while genetically unstable cancer cells continued to grow,” Breivik explains.

Evolution within

This research shows how the environment influences the selection of genes inside of the body and is identical to the principle that Darwin found to explain the origin of species.

“The body is not a static system. Our cells are in a constant state of development, and new genetic variants arise every day. Many of these mutants are removed by the immune system but, sooner or later, a cell will break through the defences and develop into a tumour of wild-growing renegades.”

Cancer development is an evolutionary process within the multicellular organism, but it is also related to the general process of evolution through the generations. Life begins when our parent’s genes are united in the zygote. These genes have been selected through millions of generations for their ability to create a functional organism, but few days after fertilization the genes split up in two different directions. Some end up in the germ cells (sperm and ova) that will bring them to the next generation, while the rest end up in the somatic cells that make up our body. The somatic cells are initially programmed to cooperate, but as we age and new mutations arise, the evolutionary process will favour cells that break ranks and propagate freely within the body. Thus, according to Breivik, the division between germ cells and somatic cells represents the Darwinian explanation to cancer (figure 2).

Time bombs

Natural selection favours genes for their ability to replicate in their given environment. Through the course of evolution, they have thereby developed increasingly more complex mechanism for self-replication, first as single celled organisms and later as cells that cooperate in complex colonies.

“This is where humans belong. We are cell colonies developed for propagating our genes from one generation to the next. As soon as our children can take care of themselves, we are irrelevant to the genes. Caring grandparents may be good to have, but dozens of enduring ancestors will not increase a gene’s chance for survival—on the contrary, they may represent a waste of valuable recourses. The entire human genome is therefore probably developed to give us a limited lifespan,” says Breivik.

He believes that many of our genes are constructed such that they protect against cancer in the first part of our lives, but that they are programmed for destruction as we get older.

“We see that DNA repair genes, which protect us from cancer in early life, contain unstable DNA sequences that increase their probability for breakdown as time passes. These sequences are ticking time bombs in our genome and represent a paradox if we consider what is best for the organism. If we take the perspective of the genes’, on the other hand, the phenomenon is quite logical,” says Breivik. He is currently studying the molecular and evolutionary mechanisms that lead to such unstable repair genes.

The next step in evolution

Despite important advances in therapy, all statistics show that the cancer incidence will continue to rise.

“The better we get at treating cancer, the older we become and the more cancer there will be in the population. Additionally, better therapy for children and young people implies that more cancer genes are passed on to the next generation. From what we know about evolutionary dynamics, I believe it’s impossible to find a therapeutic solution to cancer. The basic problem is that we are trapped in a body that the genes have made to be disposable. A solution will therefore be something much more radical than a new drug,” says Breivik.

He argues that cancer therapy is an attempt to counteract the natural decay of the body. If we think about it, however, it is not really the body we care about. After all, most people are more than happy to trade in a defect organ for a new one.

“It's the mind, our thoughts and consciousness that we desperately want to preserve. If we look at technological developments as a whole, that may be exactly what’s happening. The ongoing revolution in information and biotechnology may be interpreted as the mind’s liberation from the genes. It’s difficult to imagine the alternative, but if I could see a thousand years into the future, I would be very surprised if earth is still dominated by two-legged creatures with a limited life span,” says Jarle Breivik

Jarle Breivik | alfa
Further information:
http://www.apollon.uio.no/vis/art/2007_1/artikler/canser

Further reports about: Breivik DNA repair Evolutionary genes mutations unstable

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>