Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NYU scientists identify how development of different species uses same genes with distinct features

Biologists at New York University have identified how different species use common genes to control their early development and alter how these genes are used to accommodate their own features.

The findings, which were discovered by researchers in Professor Claude Desplan’s and Steve Small’s laboratories in NYU’s Center for Developmental Genetics, offer new insight into the workings of developmental pathways across species. The study is published in the latest issue of the journal Science.

The researchers examined the fruit fly Drosophila and the wasp Nasonia as genetic model systems. Fruit flies’ development is well-understood by biologists and therefore serves as an appropriate focus for genetic analyses. In this study, the researchers sought to explore the generality of developmental mechanisms by comparing Drosophila with Nasonia, a distant species that diverged over 250 million years ago but one that presents many morphological similarities with flies in terms of development.

The research team’s results showed that flies and wasps employ most of the same genes and similar interactions among these genes, but some events are changed to adjust to the developmental constraints.

... more about:
»anterior »bicoid

Flies rely on a gene called bicoid to pattern their early embryo. The bicoid gene product, a messenger RNA (mRNA), is localized at the anterior of the embryo where it is required both to promote anterior development and to repress posterior development. However, bicoid is unique to flies and does not exist in wasps or other species: The study’s findings show that it takes several mRNAs localized in the egg to achieve the same functions in wasps as bicoid does in flies. Two of these genes, which are found in most species of insects, are orthodenticle. Orthodenticle performs the anterior promoting function of bicoid while anterior localization of giant mRNA represses posterior development.

"This comparison of the molecular mechanisms employed by two independently evolved species not only uncovers those features essential to this portion of development, but also shows that we are now in a position to understand another species—in this case, the wasp—other than flies in the same depth," explained Desplan.

James Devitt | EurekAlert!
Further information:

Further reports about: anterior bicoid

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>