Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why some people are more attractive than others

29.03.2007
Paradox of evolutionary theory, often cited by creationists, is explained at last

Researchers believe they have solved a mystery that has puzzled evolutionary scientists for years ... if 'good' genes spread through the population, why are individuals so different?

The so-called 'lek paradox', that sexually-selecting species like humans should have much less individuality than is the case, has been seized upon by creationists as an argument that Darwin's theories are fundamentally flawed.

The problem with current evolutionary theory is that if females select the most attractive mates, the genes responsible for attractive features should spread quickly through a population, resulting in males becoming equally attractive, to the point where sexual selection could no longer take place.

... more about:
»DNA »Petrie »attractive »genetic diversity »repair »sexual

However, new research by Professor Marion Petrie and Dr Gilbert Roberts at Newcastle University, England, suggests that sexual selection can in fact cause greater genetic diversity by a mechanism not previously understood.

Professor Petrie theorised that since genetic mutations can occur anywhere in the genome, some will affect the 'DNA repair kit' possessed by all cells. As a result, some individuals have less efficient repair kits, resulting in greater variation in their DNA as damage does unrepaired.

Although unrepaired DNA is generally harmful - causing tissue to degenerate or develop cancers - it is useful in some parts of the genome, such as those parts resposible for disease defence where variation can help in the resistance to disease. It has long been known that greater variation of DNA in the disease defending regions makes it more likely that an individual can resist attacks by bacteria and viruses.

Using a computer model to map the spread of genes in a population, Professor Petrie demonstrated that the tendency towards reduction in genetic diversity caused by sexual selection is outweighed by the maintenance in greater genetic diversity generated by mutations affecting DNA repair.

The research is published today (28 March 2007) in the academic journal, Heredity, part of the Nature Publishing Group.

Professor Petrie, of the Evolution and Behaviour Research Group in the School of Biology at Newcastle University, said: 'We started this research ten years ago and our model has now produced a good fit with what we observe in terms of genetic variation, which leads us to believe that our theory is correct.' 'We find that sexual selection can promote genetic diversity despite expectations to the contrary.'

In 2005, Professor Petrie and colleagues demonstrated that men with greater genetic diversity in disease defence regions of the genome — and therefore better prospects of passing disease resistance to their offspring — had a number of physical features which women found attractive. The research involved testing men for genetic diversity and showing photographs of them to women, who allocated scores for attractiveness. These scores were found to correlate strongly to genetic diversity.

Marion Petrie | EurekAlert!
Further information:
http://www.ncl.ac.uk

Further reports about: DNA Petrie attractive genetic diversity repair sexual

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>