Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Smart' sunglasses feature lenses that change color on demand

Get ready for the coolest, most colorful shades on the planet: Chemists at the University of Washington in Seattle say they are developing ‘smart’ sunglasses that will allow the wearer to instantly change the color of their lenses to virtually any hue of the rainbow.

Whether you like your lenses clear, red, green, blue or purple, virtually any color could be obtained instantly by tuning a tiny electronic knob in the frame, the researchers say. Their study was described today at the 233rd national meeting of the American Chemical Society.

“Through polymer chemistry, we’ve developed lenses that aren’t like anything else on the market. This could be the fashion statement of the future,” says Chunye Xu, Sc.D., a chemical engineer at the University of Washington and associate director of the University’s Center for Intelligent Materials and Systems (C.I.M.S.).

The lenses of the ‘smart’ sunglasses feature a unique type of electrochromic polymer that has the ability to change levels of darkness and color in the presence of an electric current. Researchers have been developing electrochromic polymers for decades, but Xu’s lab is one of just a few using the technology to develop improved eyewear.

... more about:
»Polymer »lenses »sunglasses

Xu has developed a prototype of the eyewear that demonstrates the feasibility of these color-changing sunglasses. Powered by a tiny battery, the prototype shades currently resemble a pair of laboratory goggles with a button attached to the frame. Turning the button activates the battery and dials up the desired color, the researcher says. Ultimately, the sunglasses can be manufactured to resemble the size and shape of regular sunglasses and should cost about the same, according to Xu.

In laboratory demonstrations, Xu has shown the lenses can switch from transparent to blue, plus various shades in between, at the flip of a switch. “We are working on a multicolored device as well, but no prototype is available yet,” she says.

As the glasses require power only during switching, the device saves energy and prolongs battery life. Like regular sunglasses, they also can be coated with a protective layer to block ultraviolet light.

Fashion-conscience shoppers will have to wait a little while for this latest thing in eyewear: A practical version of the ‘smart’ sunglasses won’t be available to consumers for another one to two years, says Xu, whose lab has filed several patents related to the color-changing glasses. More testing is needed, she notes.

So far, Xu and her associates have produced the electrochromic polymers in red, blue and green. By combining the polymers of different colors into multiple layers and supplying different levels of current from the batteries in the sunglasses, a wide variety of different colors can be produced in the lenses, Xu says. Funding for the study was provided by the University of Washington.

Charmayne Marsh | EurekAlert!
Further information:

Further reports about: Polymer lenses sunglasses

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>