Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Smart' sunglasses feature lenses that change color on demand

28.03.2007
Get ready for the coolest, most colorful shades on the planet: Chemists at the University of Washington in Seattle say they are developing ‘smart’ sunglasses that will allow the wearer to instantly change the color of their lenses to virtually any hue of the rainbow.

Whether you like your lenses clear, red, green, blue or purple, virtually any color could be obtained instantly by tuning a tiny electronic knob in the frame, the researchers say. Their study was described today at the 233rd national meeting of the American Chemical Society.

“Through polymer chemistry, we’ve developed lenses that aren’t like anything else on the market. This could be the fashion statement of the future,” says Chunye Xu, Sc.D., a chemical engineer at the University of Washington and associate director of the University’s Center for Intelligent Materials and Systems (C.I.M.S.).

The lenses of the ‘smart’ sunglasses feature a unique type of electrochromic polymer that has the ability to change levels of darkness and color in the presence of an electric current. Researchers have been developing electrochromic polymers for decades, but Xu’s lab is one of just a few using the technology to develop improved eyewear.

... more about:
»Polymer »lenses »sunglasses

Xu has developed a prototype of the eyewear that demonstrates the feasibility of these color-changing sunglasses. Powered by a tiny battery, the prototype shades currently resemble a pair of laboratory goggles with a button attached to the frame. Turning the button activates the battery and dials up the desired color, the researcher says. Ultimately, the sunglasses can be manufactured to resemble the size and shape of regular sunglasses and should cost about the same, according to Xu.

In laboratory demonstrations, Xu has shown the lenses can switch from transparent to blue, plus various shades in between, at the flip of a switch. “We are working on a multicolored device as well, but no prototype is available yet,” she says.

As the glasses require power only during switching, the device saves energy and prolongs battery life. Like regular sunglasses, they also can be coated with a protective layer to block ultraviolet light.

Fashion-conscience shoppers will have to wait a little while for this latest thing in eyewear: A practical version of the ‘smart’ sunglasses won’t be available to consumers for another one to two years, says Xu, whose lab has filed several patents related to the color-changing glasses. More testing is needed, she notes.

So far, Xu and her associates have produced the electrochromic polymers in red, blue and green. By combining the polymers of different colors into multiple layers and supplying different levels of current from the batteries in the sunglasses, a wide variety of different colors can be produced in the lenses, Xu says. Funding for the study was provided by the University of Washington.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Polymer lenses sunglasses

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>