Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomics throws species definition in question for microbes

28.03.2007
Until a decade ago, scientists categorized microorganisms almost exclusively by their physical characteristics: how they looked, what they ate, and the by-products they produced.

With the advent of genomic sequencing and genetic analysis in the 1990s, our understanding of the relationships between different microorganisms fundamentally changed. In light of this new knowledge, what exactly is the definition of a microbial species, and how should microbiologists be categorizing microorganisms? These questions are the focus of a new report released by the American Academy of Microbiology (AAM) entitled Reconciling Microbial Systematics and Genomics.

"It is clear that the current system for designating microbial species is somewhat functional, but inadequate in many ways. It is unclear whether this system should be replaced or renovated," says Richard Roberts of New England Biolabs, one of the authors of the report.

The report is the result of a colloquium convened by the AAM in September 2006. Participants with expertise in microbial taxonomy, systematics, ecology, physiology and other areas described the history of microbial taxonomy, the state of the field today, and how work in the field should proceed in the future. The report is a record of their comments and recommendations.

... more about:
»Genetic »microbes »microbial »microorganisms

In the late 1800s, in order to make sense of the vast diversity of microbiological organisms, microbial taxonomists developed a system of placing microorganisms into categories in which each organism was granted a "genus" and "species" designation. At the time, physical (or phenotypic) properties were the only means of describing microorganisms, so the system was based on measurable and observable characteristics of the organisms, not genetic traits.

In the late 20th century, molecular biology uncovered the genetic relationships between microorganisms, and some of the secrets of microbes that had yet to be cultured in the lab (and hence phenotypically characterized) were revealed.

"Much of this new knowledge was incorporated into species descriptions, but difficulties in classification persisted and novel issues arose," says Roberts. "Conflicts exist between phenotypic and phylogenetic information, the means for classifying non-cultured microbes are limited under the current paradigm, and microbial species do not always demonstrate the phenotypic or genetic cohesiveness expected of them. For these reasons and others it has become clear that the species classification framework in use today is not capable of fully portraying and organizing microbial diversity."

The report contains an in-depth review of the myriad issues and conflicts involved in the classification of microbes in the post-genomic era, including a discussion on the definition of the term "species." It ends with a set of specific recommendations including, but not limited to:

- The establishment of a subcommittee within the International Committee on Systematics of Prokaryotes to consider a paradigm shift in the species definition.

- The need for more thorough study of the mechanisms of speciation before a more meaningful and practical species theory can be developed.

- The need for more comprehensive and systematic data to uncover whether microorganisms are organized into robust, definable, biologically meaningful clusters that adhere to the concept of species.

- The acquisition of draft-quality genome sequences for all type strains to help advance the integration of genomic information into our understanding of microbial diversity and enable researchers to map phenotypes to genomes.

Jim Sliwa | EurekAlert!
Further information:
http:// www.asm.org/colloquia

Further reports about: Genetic microbes microbial microorganisms

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>