New metal crystals, formed on a cotton assembly line

Appropriating cellulose fibers from cotton and crystallizing them, scientists at Pacific Northwest National Laboratory have grown never-before-seen configurations of metal crystals that show promise as components in biosensors, biological imaging, drug delivery and catalytic converters.

Deriving the desired chemical and physical properties necessary for those applications hinges on the uniform size of the metal crystals. Depending on the metal, they must be between 2 and 200 nanometers, Yongsoon Shin, a staff scientist at the Department of Energy laboratory in Richland, Wash., reported Monday at the national meeting of the American Chemical Society. PNNL laboratory fellow Gregory Exarhos led the research.

Exarhos called Shin’s experimental work “the first report of the efficacy of nanocrystalline cellulose templates in driving the formation of ordered metal and metal oxide nanoparticles at surfaces.” Exarhos has dubbed these cellulose nanocrystals “molecular factories.”

Using acid-treated cellulose fibers from cotton as a natural template, the PNNL team has been able to grow gold, silver, palladium, platinum, copper, nickel and other metal and metal-oxide nanocrystals quickly and of uniform size, Shin said. The metals display catalytic, electrical and optical that would not be present in larger or odd-sized crystals.

The acid converts the cellulose to a large, stable crystallized molecule rich in oxygen-hydrogen, or hydroxyl, groups, predictably spaced along the long chemical chains, or polymers, that comprise the cellulose molecule’s backbone. When most metal salts dissolved in solution are added in a pressurized oven and heated 70 to 200 degrees centigrade or warmer for four to 16 hours, uniform metal crystals form at the hydroxyl sites.

The researchers called this method a “green process,” requiring only heat, the crystalline cellulose and the metal salts. Other attempts to get uniform nanometals have resulted in crystals of widely variable sizes that require strong, caustic chemicals as reducing and stabilizing agents.

“We have some preliminary catalytic results,” Shin said, involving “coupling reactions of organic molecules for palladium and UV-irradiated degradation of organic dyes in water with selenium metals. “Smaller particles—15 to 20 nanometers—showed faster and higher catalytic conversion ratio compared to commercial catalysts.”

Media Contact

Bill Cannon EurekAlert!

More Information:

http://www.pnl.gov

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors