Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laying Microscale Tiles

26.03.2007
Microcrystalline monolayers: Laying by hand is superior to self-assembly methods

Craftsmen tile walls or floors by hand; but how can you get an ordered monolayer onto a substrate when the “tiles” are microscopically small instead of big and easy to handle? Previously, self-assembly processes have been the method of choice for this scale. Korean researchers have now come to the realization that even such tiny components can be arranged in a “do-it-yourself” method. As they describe in the journal Angewandte Chemie, their manually produced monolayers of microcrystals are qualitatively superior to the self-assembled variety.

How small can components be such that they can still be glued to a surface by hand? And conversely, how big can microscale components be such that they can still be arranged by self-assembly? Which method is best in the size range in which both techniques work? These questions have been investigated by a team led by Kyung Byung Yoon at Sogang University in Seoul. To find answers, they carried out experiments with variously sized zeolite crystals. Zeolites are aluminosilicate minerals with a wide range of applications in many technical fields.

The powdered zeolite was applied by simply rubbing it on with a finger (with and without wearing a latex glove). Alternatively, they were applied in solution, and ultrasound was used to kick-start the self-assembly process. The “glue” between the “mini-tiles” and the substrate was the attraction between oppositely charged groups of atoms, hydrogen bonds, and chemical bonds between reactive groups of atoms.

... more about:
»monolayer »self-assembly

The experiments demonstrated that self-assembly only works for particles smaller than about 3 µm. Hand-application works for crystals as small as 0.5 µm in diameter. In the overlapping range (0.5 to 3 µm), hand application is preferable to self-assembly for quality: the packing is denser and the microcrystals are oriented more regularly. Whereas self-assembly produces individual crystals grown at a 90° angle onto the monolayer, such “parasites” are simply rubbed off by hand. There are other “handy” advantages of the manual process as well: it is simpler, doesn’t require a solvent or special equipment, runs more smoothly, and allows treatment of larger surfaces.

Author: Kyung Byung Yoon, Sogang University, Seoul (Korea), http://www.sogang.ac.kr/bbs/faculty/2profile.php?para=101191

Title: Manual Assembly of Microcrystal Monolayers on Substrates

Angewandte Chemie International Edition 2007, 46, No. 17, doi: 10.1002/anie.200604367

| Angewandte Chemie
Further information:
http://pressroom.angewandte.org.
http://www.sogang.ac.kr/bbs/faculty/2profile.php?para=101191
http://www.wiley.co.uk

Further reports about: monolayer self-assembly

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>