Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique developed for tracking cells in the body

22.03.2007
Scientists' inability to follow the whereabouts of cells injected into the human body has long been a major drawback in developing effective medical therapies.

Now, researchers at Johns Hopkins have developed a promising new technique for noninvasively tracking where living cells go after they are put into the body. The new technique, which uses genetically encoded cells producing a natural contrast that can be viewed using magnetic resonance imaging (MRI), appears much more effective than present methods used to detect injected biomaterials.

Described in the February edition of Nature Biotechnology, the method was developed by a team of researchers from Johns Hopkins' Russell H. Morgan Department of Radiology and Radiological Science, the Hopkins Institute for Cell Engineering, and the F.M. Kirby Research Center for Functional Brain Imaging at the Kennedy Krieger Institute in Baltimore.

In their study, the researchers used a synthetic gene, called a reporter gene, which was engineered to have a high proportion of the amino acid lysine, which is especially rich in accessible hydrogen atoms. Because MRI detects energy-produced shifts in hydrogen atoms, when the "new" gene was introduced into animal cells and then "pelted" with radiofrequency waves from the MRI, it became readily visible. Using the technique as a proof of principle, the researchers were able to detect transplanted tumor cells in animal brains.

... more about:
»DETECT »MRI »technique

"This prototype paves the way for constructing a family of reporter genes, each with proteins tailored to have a specific radiofrequency response," says MRI researcher Assaf Gilad, Ph.D., lead author of the study.

"The specific frequencies can be processed to show up as colors in the MRI image," adds collaborator Mike McMahon, Ph.D., an assistant professor of radiology at the Johns Hopkins School of Medicine "In a way, it's the MRI equivalent of the green and red fluorescent proteins found in nature and used by labs everywhere in the world for multiple labeling of cells."

The problem with using fluorescent proteins, however, is that tissue must be removed from the body for examination under a microscope, which means that the method isn't suitable for use in patients. "In contrast," says Hopkins radiology professor Jeff Bulte, Ph.D., "MRI is noninvasive, allowing serial imaging of cells and cellular therapies with a high resolution unmatched by any other clinical whole-body imaging technique."

Current MRI contrast agents also have several disadvantages. "Their concentration becomes lower every time cells divide," says Peter van Zijl, Ph.D., founding director of the Kirby Research Center for Functional Brain Imaging, "so our ability to see them diminishes.. Also, using magnetic metal allows us to detect only one type of labeled cell at a time." The new approach is not hampered by these limitations.

Gary Stephenson | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: DETECT MRI technique

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>