Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecule derived from Rb2/p130 could act as cancer therapeutic

21.03.2007
A small molecule derived from the spacer domain of the tumor-suppressor gene Rb2/p130 has demonstrated the ability to inhibit tumor growth in vivo and could be developed into an anti-cancer therapeutic, according to researchers at Temple University's Sbarro Institute for Cancer Research and Molecular Medicine.

The researchers reported their findings, "A small molecule based on the pRb2/p130 spacer domain leads to inhibition of cdk2 activity, cell cycle arrest and tumor growth reduction in vivo," in the March 22 issue of the journal Oncogene (http://www.nature.com/onc). Rb2/p130 was discovered in the early 1990s by Antonio Giordano, director of the Sbarro Institute (http://www.shro.org) and the Center for Biotechnology in Temple's College of Science and Technology, who headed the study.

The researchers discovered that within Rb2/p130's spacer domain--a sequence of 212 amino acids located in the pocket or middle section of the gene--was a small portion that resembled an amino-acidic sequence contained in the protein p21, which acts as a cdk (cyclin dependent kinase) inhibitor. Cdks play a critical role in cell cycle regulation.

"What we tested was the ability of the Rb2/p130 spacer region to inhibit the kinase activity of cdk2, which is the same kinase p21 inhibits," said Giordano, one of the study's lead authors. "And to our surprise, it happened." The researchers then set about trying to reduce the spacer domain's 212 amino acids down to the smallest sequence that would still produce the same functionality as p21, explained Giordano.

... more about:
»Rb2/p130 »amino acid »sequence »spacer

"We thought we could narrow down the spacer region that contains the protein-like motif to a small portion that could be delivered as a small molecule or peptide," Giordano said.

They discovered a 39 amino-acid-long sequence, which they named Spa310. The molecule that was synthetically produced in the laboratory was introduced into mice that had been injected with tumor cells.

"Tumor growth was inhibited and the tumors began to reduce in size until they disappeared," Giordano said.

Giordano said because of the intrinsic nature of the compound, it can be easily reproduced as a biological drug in large quantities and does not require potentially dangerous means of delivery like viruses, as do most gene therapies; therefore Spa310 has a good chance to succeed as an anti-cancer therapy. For these reasons, he believes it may be easier to get approval for clinical trials.

"Fifteen years after discovering Rb2/p130, our research and hard work has led us to the discovery of this small molecule, which is a step forward in cancer research and a big step toward a cancer treatment," he said.

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

Further reports about: Rb2/p130 amino acid sequence spacer

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>