Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecule derived from Rb2/p130 could act as cancer therapeutic

21.03.2007
A small molecule derived from the spacer domain of the tumor-suppressor gene Rb2/p130 has demonstrated the ability to inhibit tumor growth in vivo and could be developed into an anti-cancer therapeutic, according to researchers at Temple University's Sbarro Institute for Cancer Research and Molecular Medicine.

The researchers reported their findings, "A small molecule based on the pRb2/p130 spacer domain leads to inhibition of cdk2 activity, cell cycle arrest and tumor growth reduction in vivo," in the March 22 issue of the journal Oncogene (http://www.nature.com/onc). Rb2/p130 was discovered in the early 1990s by Antonio Giordano, director of the Sbarro Institute (http://www.shro.org) and the Center for Biotechnology in Temple's College of Science and Technology, who headed the study.

The researchers discovered that within Rb2/p130's spacer domain--a sequence of 212 amino acids located in the pocket or middle section of the gene--was a small portion that resembled an amino-acidic sequence contained in the protein p21, which acts as a cdk (cyclin dependent kinase) inhibitor. Cdks play a critical role in cell cycle regulation.

"What we tested was the ability of the Rb2/p130 spacer region to inhibit the kinase activity of cdk2, which is the same kinase p21 inhibits," said Giordano, one of the study's lead authors. "And to our surprise, it happened." The researchers then set about trying to reduce the spacer domain's 212 amino acids down to the smallest sequence that would still produce the same functionality as p21, explained Giordano.

... more about:
»Rb2/p130 »amino acid »sequence »spacer

"We thought we could narrow down the spacer region that contains the protein-like motif to a small portion that could be delivered as a small molecule or peptide," Giordano said.

They discovered a 39 amino-acid-long sequence, which they named Spa310. The molecule that was synthetically produced in the laboratory was introduced into mice that had been injected with tumor cells.

"Tumor growth was inhibited and the tumors began to reduce in size until they disappeared," Giordano said.

Giordano said because of the intrinsic nature of the compound, it can be easily reproduced as a biological drug in large quantities and does not require potentially dangerous means of delivery like viruses, as do most gene therapies; therefore Spa310 has a good chance to succeed as an anti-cancer therapy. For these reasons, he believes it may be easier to get approval for clinical trials.

"Fifteen years after discovering Rb2/p130, our research and hard work has led us to the discovery of this small molecule, which is a step forward in cancer research and a big step toward a cancer treatment," he said.

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

Further reports about: Rb2/p130 amino acid sequence spacer

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>