Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small molecule derived from Rb2/p130 could act as cancer therapeutic

21.03.2007
A small molecule derived from the spacer domain of the tumor-suppressor gene Rb2/p130 has demonstrated the ability to inhibit tumor growth in vivo and could be developed into an anti-cancer therapeutic, according to researchers at Temple University's Sbarro Institute for Cancer Research and Molecular Medicine.

The researchers reported their findings, "A small molecule based on the pRb2/p130 spacer domain leads to inhibition of cdk2 activity, cell cycle arrest and tumor growth reduction in vivo," in the March 22 issue of the journal Oncogene (http://www.nature.com/onc). Rb2/p130 was discovered in the early 1990s by Antonio Giordano, director of the Sbarro Institute (http://www.shro.org) and the Center for Biotechnology in Temple's College of Science and Technology, who headed the study.

The researchers discovered that within Rb2/p130's spacer domain--a sequence of 212 amino acids located in the pocket or middle section of the gene--was a small portion that resembled an amino-acidic sequence contained in the protein p21, which acts as a cdk (cyclin dependent kinase) inhibitor. Cdks play a critical role in cell cycle regulation.

"What we tested was the ability of the Rb2/p130 spacer region to inhibit the kinase activity of cdk2, which is the same kinase p21 inhibits," said Giordano, one of the study's lead authors. "And to our surprise, it happened." The researchers then set about trying to reduce the spacer domain's 212 amino acids down to the smallest sequence that would still produce the same functionality as p21, explained Giordano.

... more about:
»Rb2/p130 »amino acid »sequence »spacer

"We thought we could narrow down the spacer region that contains the protein-like motif to a small portion that could be delivered as a small molecule or peptide," Giordano said.

They discovered a 39 amino-acid-long sequence, which they named Spa310. The molecule that was synthetically produced in the laboratory was introduced into mice that had been injected with tumor cells.

"Tumor growth was inhibited and the tumors began to reduce in size until they disappeared," Giordano said.

Giordano said because of the intrinsic nature of the compound, it can be easily reproduced as a biological drug in large quantities and does not require potentially dangerous means of delivery like viruses, as do most gene therapies; therefore Spa310 has a good chance to succeed as an anti-cancer therapy. For these reasons, he believes it may be easier to get approval for clinical trials.

"Fifteen years after discovering Rb2/p130, our research and hard work has led us to the discovery of this small molecule, which is a step forward in cancer research and a big step toward a cancer treatment," he said.

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

Further reports about: Rb2/p130 amino acid sequence spacer

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>