Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein sciences

Expression and interaction of fluorescently labelled proteins makes living cells glow in different colours: A novel assay allows simultaneous detection of individual proteins and their interactions in living cells

Protein interactions direct cellular functions and their responses to pathogens and are important therapeutic targets. Scientists from the GSF Research Centre for Environment and Health have recently developed a method enabling simultaneous visualization of individual proteins and their interactions in living cells.

This is achieved by engineering the proteins to constantly emit red or blue fluorescent signals and to produce an additional yellow fluorescent signal upon interaction (see image below). Dr. Ruth Brack-Werner, Director of the GSF Institute of Molecular Virology (IMV) explains the decisive advantage of the new approach: “ In previous assays, signals were generated only by interacting proteins, whereas the individual partners remained undetected. However, the absence of signals could not be used to rule out protein interactions since the absence of one or both interaction partners would have the same effect. To overcome this problem Brack-Werner and her team developed the so-called extended bimolecular fluorescence complementation (exBiFC) which allows simultaneous monitoring of individual proteins and their interactions.

Dr. Ruth Brack-Werner, Institute of Molecular Virology of the GSF [300 dpi resolution for print] Photo: private.

... more about:
»Assay »Brack-Werner »HIV »REV »individual

Brack-Werner and her colleagues’ groundbreaking research work focusses on mechanisms that control replication of the human immunodeficiency virus (HIV), which causes AIDS. “HIV replication is based on the interaction of cellular proteins with viral proteins. Interactions involving viral regulatory factors have a direct impact on the amount of virus produced by the HIV host cell”, Brack-Werner explains. “Preventing HIV proteins from interacting with their crucial partners is a promising approach to developing novel therapies.” Therefore the GSF-scientists developed and validated exBiFC with the HIV Rev protein, which is an accelerator of HIV production. Various assays investigating Rev interactions in artificial settings indicate that the activity of Rev depends on the interaction of Rev molecules with each other and with cellular proteins. The latter include Exportin 1, which transports proteins from the nucleus to the cytoplasm and RISP, a modulator of HIV gene expression discovered by the Brack-Werner team in previous studies. Brack-Werner and her team demonstrated that exBIFC allows visualization of interactions of Rev with itself and with Exportin1 and RISP in living cells. In addition they were able to compare the strengths of the interactions of Rev with its partners by analysing the intensities of the signals in cell images.

ExBiFC has a wide range of potential appllications and represents an important tool for the elucidation of protein interaction networks and discovery of novel antiviral factors. Thus exBIFC has an enormous potential in the battle against leading global health problems such as infectious diseases and cancers.

GSF - Forschungszentrum für Umwelt und Gesundheit, Germany
Dept. of Public Affairs
Tel: 0049/89/3187-2460
Fax 0049/89/3187-3324

Heinz Joerg Haury | EurekAlert!
Further information:

Further reports about: Assay Brack-Werner HIV REV individual

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>