Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC researcher finds new way to treat devastating fungal infections

07.03.2007
Devastating blood-borne fungal infections that can be lethal for HIV/AIDS, cancer, and organ transplant patients may be treated more successfully, thanks to a new drug delivery method developed by researchers at the University of British Columbia in Vancouver.

Pharmaceutical Sciences Prof. Kishor M. Wasan has created a liquid preparation that incorporates drug molecules in fat (lipid-based formulation) so that Amphotericin B, a potent anti-fungal agent, can be taken by mouth with minimal side effects. The agent, used for about 50 years, is currently administered intravenously and has significant toxic side effects, notably severe kidney toxicity as well as serious tissue damage at the intravenous injection site.

Wasan and his research team have discovered that the oral preparation triggers a different molecular interaction than intravenous delivery. The lipid-based system attacks fungal cells only while inhibiting the drug’s interaction with kidney cells – boosting effectiveness and dramatically reducing toxicity.

The research findings will be presented today at a meeting sponsored by the American Association of Pharmaceutical Scientists in Washington, D.C. Findings will be published in July 2007 in Drug Development and Industrial Pharmacy.

... more about:
»Researcher »fungal »treat

Because the oral form of the drug is easier to administer and cheaper than intravenous delivery, Wasan predicts that more patients – especially those in underserved areas and developing countries – would have access to the medicine. He notes that Amphotericin B is also used to treat Leishmaniasis, a parasitic disease that affects an estimated two million people worldwide according to the Centers for Disease Control and Prevention (CDCP) in the U.S.

“This research was triggered by clinicians needing a way to kill these fungal infections without risking the patient’s kidney,” says Wasan, who is a Distinguished University Scholar and a Canadian Institutes of Health Research Chair in Drug Development. “Despite antifungal agents, treating these infections is difficult and challenges researchers to find better outcomes for the patient.”

Wasan tested the drug delivery method, in animal models, against two fungal infections seen in their most severe forms in people with suppressed immune systems, such as surgical patients and those with chronic illness.

He treated Candida albicans, often seen as esophageal candidiasis, an infection prevalent in HIV/AIDS and cancer patients receiving chemotherapy, and aspergillosis, an infection caused by aspergillus fumigatis, a family of common moulds that can cause symptoms ranging from cough to brain damage. The oral formulation proved effective and minimally toxic against both infections.

A clinical study of the drug delivery system, involving 50-100 patients, is planned for later this year. A form of invasive candidiasis called candidemia is the fourth most common bloodstream infection among hospitalized patients in the U.S. A survey conducted at CDCP found that candidemia occurs in eight of every 100,000 persons per year. Persons at high risk include low-birth-weight babies and surgical patients.

Incidence of invasive aspergillosis was five-10 per 1,000, according to an analysis of medical records of 35,232 HIV-infected patients who attended outpatient clinics in 10 U.S. cities between 1990 and 1998, according to Health Canada.

Hilary Thomson | EurekAlert!
Further information:
http://www.ubc.ca

Further reports about: Researcher fungal treat

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>