Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find the mechanism by which cells resist chemotherapy

A team of researchers from the UAB's Mutagenesis Group, led by Doctor Jordi Surralés, has identified one of the mechanisms used by cancer cells to resist chemotherapy. This discovery, published in The EMBO Jorunal, will make it possible to develop strategies to make tumours more vulnerable to chemotherapy.

In his paper, published in The EMBO Jorunal, Dr Surrallés describes how proteins of the Fanconi/BRCA pathway recognise the presence of genetic mutations in order to repair them. The researchers also found that alteration of this mechanism makes tumour cells much more sensitive to certain drugs. This discovery will make it possible to develop strategies to make tumours more vulnerable to chemotherapy.

One of the main mechanisms responsible for repairing mutations in humans is the cancer-suppressing Fanconi anaemia/BRCA pathway. This mechanism makes it possible for the cells to identify genetic mutations in order to correct them.

If this mechanism does not function correctly, it leads to Fanconi anaemia, a rare genetic disorder characterised by progressive bone-marrow failure, various congenital malformations and a very high risk of cancer.

Furthermore, the proteins of this pathway are largely responsible for the resistance of tumours to many antitumour agents such as cisplatin and other chemotherapeutic agents that kill tumour cells by producing DNA interstrand crosslinks. That is, they identify cellular alterations induced by chemotherapy and correct them, "accidentally" helping the tumour.

Many tumours have molecular anomalies in this pathway. These defects mean the tumours can be treated efficiently using certain antitumour agents. There are at least 13 genes involved in the pathway. Three of these (BRCA2, BRIP1 and PALB2) are responsible for the high proportion of hereditary breast cancers (between 5 and 10% of all breast cancers).

Understanding how this DNA repair pathway works is of great interest to biomedicine, not only for Fanconi anaemia patients, but also for the general cancer population, since it determines the the efficacy of chemotherapy in treating many tumours. However, the involvement of 13 genes in the same pathway makes the study more complexed.

A team of researchers from the UAB's Mutagenesis Group, led by Doctor Jordi Surralés, has identified one of the important unresolved questions regarding this pathway: how the Fanconi anaemia proteins detect the presence of mutations so they can repair them.

The researchers have found that the mutations block the DNA replication process, a process that is necessary, especially in tumour tissues, for the cells to be able to divide and proliferate. By blocking the replication process, the mutations activate a type of enzyme, the ATR kinase, which phosphorylates (introduces phosphate groups into) histone H2AX, a protein present in the chromatin that surrounds the damaged DNA. The phosphorylated histone H2AX indicates the location of the genetic damage to the Fanconi proteins and places them in exactly the right place to repair the DNA.

The researchers have shown that one of the 13 Fanconi proteins, the FANCD2, binds directly to the phosphorylated histone H2AX. The BRCA1 protein also plays a part in this process and, alongside the BRCA2, it is involved in most hereditary breast cancers. So these proteins cooperate in repairing the genetic damage, preserving the stability of the chromosomes and preventing the onset of tumours.

This research will have many implications on biomedicine. The increase in knowledge on this pathway will make it possible to design strategies for the chemosensitisation of tumour cells. Dr Jordi Surallés's team has also observed that many breast cancer cell lines are between two to three times more sensitive to chemotherapy if they have partially inhibited the Fanconi FANCD2 gene expression.

The results of this study, carried out entirely within the UAB Department Of Genetics and Microbiology, will be published in The EMBO Journal. Most of the work was carried out by the post-doctoral researchers Massimo Bogliolo and Alex Lyakhovich. The group directed by Dr Jordi Surallés is funded by the EU commission, the FEDER fund, the Spanish Ministry of Education and Science, the Spanish Ministry of Health and Consumption, Fundación La Caixa, Genoma España and the Centro de Investigación Biomédica en Red en Enfermedades Raras.

Octavi López Coronado | alfa
Further information:

Further reports about: DNA Jordi chemotherapy genetic mutation mechanism tumour

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>