Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Tr(i)ks of memory

28.02.2007
Spanish researchers from the Centre for Genomic Regulation, at the Mouse Neurobehavioral Unit, in Barcelona, and from the Division of Neuroscience, Universidad Pablo de Olavide, in Seville, have provided provocative results on the intimate mechanisms of associative learning in their study on the role of the neurotrophin-3-TrkC (NT-3-TrkC) system on synaptic plasticity.

The study will be published in the Journal of Neuroscience (February 28, 2007 issue). They had opportunity to determine activity-dependent plasticity – a cellular process, in which the connections between individual brain cells get stronger the more often they are used, such as during learning - in the hippocampus of freely moving mouse mutants. Recording in vivo techniques were developed last year by the group of Drs. J.M. Delgado-García and A. Gruart (see Gruart et al., 26: 1077-1087, 2006), and allow determining the explicit relation between the learning process and the physiological synaptic enhancement in the hippocampus.

Neurotrophins and their receptors might serve as feedback regulators for the efficacy of synaptic transmission. As recently shown in vivo by some of us, the BDNF-TrkB system is well known for its importance in synaptic plasticity and long-term potentiation (LTP) in the hippocampus (see Gruart et al., Learn. Mem., 4: 54-62, 2007). However, until now, the role of other neurotrophin systems in mediating synaptic modulation remained to be elucidated. In their study, the groups of Drs. M. Dierssen, and J.M. Delgado-García and A. Gruart used transgenic mice overexpressing TrkC to test the hypothesis that in vivo overexpression of the TrkC receptor could produce an increase in survival and/or neuronal induction or promotion in the hippocampus, with some putative consequences for learning and synaptic plasticity in adult mice. In their experiments, the activity-dependent strength of the hippocampal CA3-CA1 synapse –a brain region involved in learning- was recorded in behaving mice, while animals were being trained to the classical conditioning of eyelid responses.

For the first time, the work clearly provides evidence for a direct, causal role for the NT-3-TrkC cascade in the physiological potentiation of field excitatory post-synaptic potentials (fEPSP) evoked at the CA3-CA1 synapse during the acquisition of an associative learning task, as well as in early and late maintenance of experimentally induced LTP. Interestingly, overexpression of TrkC seems to reduce the efficiency of conditioned learning, an effect that has previously been observed after LTP ‘saturation’ induced experimentally in behaving mice (Gruart et al., 26: 1077-1087, 2006). It is thus possible that TrkC overexpression enhances too much hippocampal synaptic activity, which then occludes normal associative learning.

... more about:
»Gruart »Hippocampus »TrkC »plasticity »synaptic

This paper shows for the first time the dissociation between the ability to learn a task and the changes in synaptic plasticity seen during synaptic potentiation in behaving mice and suggests that it is the combination of different neurotrophin systems what leads to the proper balance of learning abilities in mammals.

Gloria Lligadas | alfa
Further information:
http://www.crg.es

Further reports about: Gruart Hippocampus TrkC plasticity synaptic

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>