Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Tr(i)ks of memory

28.02.2007
Spanish researchers from the Centre for Genomic Regulation, at the Mouse Neurobehavioral Unit, in Barcelona, and from the Division of Neuroscience, Universidad Pablo de Olavide, in Seville, have provided provocative results on the intimate mechanisms of associative learning in their study on the role of the neurotrophin-3-TrkC (NT-3-TrkC) system on synaptic plasticity.

The study will be published in the Journal of Neuroscience (February 28, 2007 issue). They had opportunity to determine activity-dependent plasticity – a cellular process, in which the connections between individual brain cells get stronger the more often they are used, such as during learning - in the hippocampus of freely moving mouse mutants. Recording in vivo techniques were developed last year by the group of Drs. J.M. Delgado-García and A. Gruart (see Gruart et al., 26: 1077-1087, 2006), and allow determining the explicit relation between the learning process and the physiological synaptic enhancement in the hippocampus.

Neurotrophins and their receptors might serve as feedback regulators for the efficacy of synaptic transmission. As recently shown in vivo by some of us, the BDNF-TrkB system is well known for its importance in synaptic plasticity and long-term potentiation (LTP) in the hippocampus (see Gruart et al., Learn. Mem., 4: 54-62, 2007). However, until now, the role of other neurotrophin systems in mediating synaptic modulation remained to be elucidated. In their study, the groups of Drs. M. Dierssen, and J.M. Delgado-García and A. Gruart used transgenic mice overexpressing TrkC to test the hypothesis that in vivo overexpression of the TrkC receptor could produce an increase in survival and/or neuronal induction or promotion in the hippocampus, with some putative consequences for learning and synaptic plasticity in adult mice. In their experiments, the activity-dependent strength of the hippocampal CA3-CA1 synapse –a brain region involved in learning- was recorded in behaving mice, while animals were being trained to the classical conditioning of eyelid responses.

For the first time, the work clearly provides evidence for a direct, causal role for the NT-3-TrkC cascade in the physiological potentiation of field excitatory post-synaptic potentials (fEPSP) evoked at the CA3-CA1 synapse during the acquisition of an associative learning task, as well as in early and late maintenance of experimentally induced LTP. Interestingly, overexpression of TrkC seems to reduce the efficiency of conditioned learning, an effect that has previously been observed after LTP ‘saturation’ induced experimentally in behaving mice (Gruart et al., 26: 1077-1087, 2006). It is thus possible that TrkC overexpression enhances too much hippocampal synaptic activity, which then occludes normal associative learning.

... more about:
»Gruart »Hippocampus »TrkC »plasticity »synaptic

This paper shows for the first time the dissociation between the ability to learn a task and the changes in synaptic plasticity seen during synaptic potentiation in behaving mice and suggests that it is the combination of different neurotrophin systems what leads to the proper balance of learning abilities in mammals.

Gloria Lligadas | alfa
Further information:
http://www.crg.es

Further reports about: Gruart Hippocampus TrkC plasticity synaptic

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>