Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Tr(i)ks of memory

28.02.2007
Spanish researchers from the Centre for Genomic Regulation, at the Mouse Neurobehavioral Unit, in Barcelona, and from the Division of Neuroscience, Universidad Pablo de Olavide, in Seville, have provided provocative results on the intimate mechanisms of associative learning in their study on the role of the neurotrophin-3-TrkC (NT-3-TrkC) system on synaptic plasticity.

The study will be published in the Journal of Neuroscience (February 28, 2007 issue). They had opportunity to determine activity-dependent plasticity – a cellular process, in which the connections between individual brain cells get stronger the more often they are used, such as during learning - in the hippocampus of freely moving mouse mutants. Recording in vivo techniques were developed last year by the group of Drs. J.M. Delgado-García and A. Gruart (see Gruart et al., 26: 1077-1087, 2006), and allow determining the explicit relation between the learning process and the physiological synaptic enhancement in the hippocampus.

Neurotrophins and their receptors might serve as feedback regulators for the efficacy of synaptic transmission. As recently shown in vivo by some of us, the BDNF-TrkB system is well known for its importance in synaptic plasticity and long-term potentiation (LTP) in the hippocampus (see Gruart et al., Learn. Mem., 4: 54-62, 2007). However, until now, the role of other neurotrophin systems in mediating synaptic modulation remained to be elucidated. In their study, the groups of Drs. M. Dierssen, and J.M. Delgado-García and A. Gruart used transgenic mice overexpressing TrkC to test the hypothesis that in vivo overexpression of the TrkC receptor could produce an increase in survival and/or neuronal induction or promotion in the hippocampus, with some putative consequences for learning and synaptic plasticity in adult mice. In their experiments, the activity-dependent strength of the hippocampal CA3-CA1 synapse –a brain region involved in learning- was recorded in behaving mice, while animals were being trained to the classical conditioning of eyelid responses.

For the first time, the work clearly provides evidence for a direct, causal role for the NT-3-TrkC cascade in the physiological potentiation of field excitatory post-synaptic potentials (fEPSP) evoked at the CA3-CA1 synapse during the acquisition of an associative learning task, as well as in early and late maintenance of experimentally induced LTP. Interestingly, overexpression of TrkC seems to reduce the efficiency of conditioned learning, an effect that has previously been observed after LTP ‘saturation’ induced experimentally in behaving mice (Gruart et al., 26: 1077-1087, 2006). It is thus possible that TrkC overexpression enhances too much hippocampal synaptic activity, which then occludes normal associative learning.

... more about:
»Gruart »Hippocampus »TrkC »plasticity »synaptic

This paper shows for the first time the dissociation between the ability to learn a task and the changes in synaptic plasticity seen during synaptic potentiation in behaving mice and suggests that it is the combination of different neurotrophin systems what leads to the proper balance of learning abilities in mammals.

Gloria Lligadas | alfa
Further information:
http://www.crg.es

Further reports about: Gruart Hippocampus TrkC plasticity synaptic

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>