Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental evolution in robots probes the emergence of biological communication

23.02.2007
Using an ingenious approach involving virtual robots that possess evolvable genomes, researchers have identified key factors that may play important roles in determining the manner in which communication arises during the evolution of social organisms.

The findings, reported by a group including Dario Floreano of Ecole Polytechnique Fédérale de Lausanne, in Switzerland, and Laurent Keller of the University of Lausanne, will appear online in the journal Current Biology on February 22nd.

Communication is critical for social organisms to ensure their ecological success, but the evolution of communication is very challenging to study because of the difficulty of performing experimental evolution with social animals, and the lack of fossil evidence for changes in communication skills over time.

In the new work, the researchers studied the changing behavior of 100 "colonies" of ten virtual robots over 500 generations, during which their virtual genomes were subjected to mutation and recombination, mimicking the genetic variation introduced by sexual reproduction. Within this experimental system, the robots could forage in a virtual environment containing food and poison sources that could only be discriminated at close range.

... more about:
»Communication »Evolution

Theoretically, the efficiency of food foraging could be increased if robots transmitted information to one another about food and poison locations—however, under some conditions, such communication could be costly to the individual, who could lose out by advertising the location of a valuable resource. This situation reflects the evolutionary pressures facing social animals in real-world conditions, where communication may be costly or harmful to the individual, but beneficial to the group. Such pressures set up potentially complex evolutionary dynamics that the researchers were able to investigate in their study: For example, they examined how kinship influences the evolution of communication by performing evolution simulations on robot colonies with different levels of relatedness within the group. Similarly, the researchers used the simulations to look at the effect on communication of different "levels of selection"—that is, the scales at which altruism and competition occur within a given group.

Among the findings was the observation that communication evolves rapidly when colonies contain genetically similar (related) individuals, or when evolutionary selection pressure works primarily on the "group" level. The only scenario in which communication did not result in higher foraging efficiency was when colonies were composed of robots of low relatedness, and in which selection was strongest at the level of the individual—in some cases, these conditions gave rise to the use of deceptive communication signals and a concomitant decrease in colony performance. The researchers also found that once a system of communication became established during the evolution experiments, it tended to constrain the development of more efficient communication systems.

At the conclusion of the study, the researchers showed that they could implement "evolved" robot genomes in real robots, and that these robots did indeed display the communication and foraging behavior observed in the simulations.

Erin Doonan | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Communication Evolution

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>