Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental evolution in robots probes the emergence of biological communication

23.02.2007
Using an ingenious approach involving virtual robots that possess evolvable genomes, researchers have identified key factors that may play important roles in determining the manner in which communication arises during the evolution of social organisms.

The findings, reported by a group including Dario Floreano of Ecole Polytechnique Fédérale de Lausanne, in Switzerland, and Laurent Keller of the University of Lausanne, will appear online in the journal Current Biology on February 22nd.

Communication is critical for social organisms to ensure their ecological success, but the evolution of communication is very challenging to study because of the difficulty of performing experimental evolution with social animals, and the lack of fossil evidence for changes in communication skills over time.

In the new work, the researchers studied the changing behavior of 100 "colonies" of ten virtual robots over 500 generations, during which their virtual genomes were subjected to mutation and recombination, mimicking the genetic variation introduced by sexual reproduction. Within this experimental system, the robots could forage in a virtual environment containing food and poison sources that could only be discriminated at close range.

... more about:
»Communication »Evolution

Theoretically, the efficiency of food foraging could be increased if robots transmitted information to one another about food and poison locations—however, under some conditions, such communication could be costly to the individual, who could lose out by advertising the location of a valuable resource. This situation reflects the evolutionary pressures facing social animals in real-world conditions, where communication may be costly or harmful to the individual, but beneficial to the group. Such pressures set up potentially complex evolutionary dynamics that the researchers were able to investigate in their study: For example, they examined how kinship influences the evolution of communication by performing evolution simulations on robot colonies with different levels of relatedness within the group. Similarly, the researchers used the simulations to look at the effect on communication of different "levels of selection"—that is, the scales at which altruism and competition occur within a given group.

Among the findings was the observation that communication evolves rapidly when colonies contain genetically similar (related) individuals, or when evolutionary selection pressure works primarily on the "group" level. The only scenario in which communication did not result in higher foraging efficiency was when colonies were composed of robots of low relatedness, and in which selection was strongest at the level of the individual—in some cases, these conditions gave rise to the use of deceptive communication signals and a concomitant decrease in colony performance. The researchers also found that once a system of communication became established during the evolution experiments, it tended to constrain the development of more efficient communication systems.

At the conclusion of the study, the researchers showed that they could implement "evolved" robot genomes in real robots, and that these robots did indeed display the communication and foraging behavior observed in the simulations.

Erin Doonan | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Communication Evolution

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>