Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Batten Down the Hatches Against HIV

22.02.2007
Carbon nanotubes transport gene therapy drug into T-cells known to block HIV from entering cells in vitro

A promising approach to gene therapy involves short DNA fragments (interfering RNA) that bind to specific genes and block their “translation” into the corresponding, disease-related protein. A stumbling block has been the efficient and targeted delivery of RNA into the cells. Researchers led by Hongjie Dai at Stanford University have chosen to use carbon nanotubes as their “means of transport”.

This has allowed them to successfully introduce RNA fragments that “switch off” the genes for special HIV-specific receptors and co-receptors on the cells’ surface into human T-cells and primary blood cells. This leaves few “entry hatches” for the HIV viruses. The researchers report in the journal Angewandte Chemie that this allows for much better silencing effect to the cells than current transport systems based on liposomes.

T-cells are one of the types of white blood cells important for a good immune defense; they detect and destroy virus-affected cells. However, they themselves are among the targets attacked by HIV. In order to enter into a T-cell, the virus must first dock to a receptor known as CD4. Also involved is the co-receptor CXCR4. The use of short interfering RNA strands allows the CD4 and CXCR4 genes of the T-cell to be shut off. The T-cell then strops producing these receptors and the virus cannot find any points of attack on the surface of the cell. This could significantly slow down an HIV infection, as previous work have shown.

... more about:
»HIV »Nanotubes »RNA »T-cell »receptor

But how to get the RNA fragments into the T-cells? The shells of nonpathogenic viruses can be used to smuggle genetic material into cells, but this is dangerous in therapeutic applications because they can trigger allergies. Liposomes, tiny bubbles of fat, are safe but have proven to be ineffective for use in T-cells. Dai and his co-workers have tested a new transport system: carbon nanotubes are known for their abilities to be absorbed by cells and to smuggle other molecules in at the same time. The researchers attached phospholipids—molecules from which cell membranes are also made—to chains of polyethylene glycol. The phospholipids nestle securely onto the outer wall of the carbon nanotubes while the polyethylene glycol chains protrude into the surrounding solution. The required RNA molecules were fastened to the ends of these chains. Once inside the cell, the RNA could easily be split off by means of a sulfur–sulfur bridge.

Author: Hongjie Dai, Stanford University (USA), http://www.stanford.edu/dept/chemistry/faculty/dai/

Title: siRNA Delivery into Human T Cells and Primary Cells with Carbon-Nanotube Transporters

Angewandte Chemie International Edition 2007, 46, No. 12, doi: 10.1002/anie.200604295

Hongjie Dai | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.
http://www.stanford.edu/dept/chemistry/faculty/dai/

Further reports about: HIV Nanotubes RNA T-cell receptor

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>