Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme critical for early growth of abdominal aortic aneurysms

15.02.2007
Surgery is the only treatment for an abdominal aortic aneurysm, a weak spot in the body's main artery that dilates dangerously over time. If the vessel ruptures suddenly before surgery to repair it, a quick death is virtually certain.

Now, scientists say they have identified a key enzyme that triggers chronic inflammation in the aorta and promotes the growth of aneurysms. Their finding raises hopes for developing a drug that could prevent small aneurysms from enlarging to the point where surgery is necessary.

Genetically engineered mice that lack the enzyme dipeptidyl peptidase I (DPPI) do not develop aortic aneurysms, researchers at Washington University School of Medicine in St. Louis report in the online edition of the Proceedings of the National Academy of Sciences U.S.A. "We think DPPI is a viable therapeutic target that may keep the growth of aortic aneurysms in check, so they don't become life threatening," says Robert W. Thompson, M.D., professor of surgery and one of the senior investigators on the article.

The new research shows that DPPI is critical for the recruitment of inflammatory cells to the aortic wall, and that these cells push the inflammation from an acute phase into a chronic phase. The researchers suspect that this chronic inflammation eventually causes other enzymes to eat away at the structural proteins of the aorta, causing the vessel to balloon slowly and ultimately rupture in patients whose aortas are greatly distended.

... more about:
»Critical »DPPI »Thompson »abdominal »aortic »neutrophils

Abdominal aortic aneurysms kill about 15,000 Americans each year and have claimed the lives of such notables as Albert Einstein and Lucille Ball. The condition often goes undiagnosed because small aneurysms rarely cause symptoms. Typically, they are discovered by accident when patients have an X-ray or ultrasound for another medical concern.

If an aneurysm is small, doctors generally monitor it closely and recommend surgery only if its diameter grows larger than 5.5 centimeters (about 2 inches). Eventually, 60 percent of patients with small aneurysms will require surgery, a procedure that costs about $20,000. A drug treatment that could help patients avoid the risks and the high cost of major surgery would be ideal, Thompson says.

In the current study, the researchers used an experimental model in mice that mimics aortic aneurysms in humans. They perfused the enzyme elastase into the aortas of the mice, causing the aortic wall to dilate. Two weeks later, the aortas of DPPI-deficient mice had not enlarged much, while the aortas of the normal mice had nearly doubled in diameter.

When the investigators probed further, they found high levels of inflammatory cells in the ballooning aortas of the normal mice but few such cells in the aortas of the mice that lacked DPPI. "Without DPPI, the inflammatory response never really gets going, and the mice don't develop aneurysms," says senior author Monica Pagano, M.D.

Thompson's group became interested in DPPI several years ago when their own genetic studies revealed it is elevated in tissues from both human and mouse aneurysms. The enzyme is found in many cells, including neutrophils. Scientists had thought that the primary role of this enzyme was to degrade proteins. However, new research at Washington University and elsewhere suggests that its functions lie beyond its degrading activity.

Christine Pham, M.D., assistant professor of medicine and the other senior author, developed the DPPI-deficient mouse model and showed that this enzyme modulates many inflammatory processes through the activation of a cascade of enzymes. The work exemplifies the type of scientific collaboration that leads to novel insights by melding together the interests of two laboratories - one led by Thompson that focuses on a clinical problem and the other led by Pham that centers on particular molecular pathways of disease.

In the new research, the scientists confirmed the crucial role of neutrophil-associated DPPI when they depleted neutrophils in normal mice and then perfused their aortas with elastase. This time, the animals did not develop aneurysms. Conversely, when they transferred normal neutrophils into the DPPI-deficient mice, they went on to develop aneurysms.

The researchers found the neutrophils that gather at the site of aortic injury send out a distress call in the form of a chemical, CXCL2, which sustains the inflammation by sending even more neutrophils to the aortic wall. Eventually, the overwhelming inflammatory response summons other enzymes to the aortic wall to breakdown its structural component, elastin.

When the researchers blocked the action of CXCL2 in mice, neutrophils did not congregate at the aortic wall because there was no signal leading them there, and aneuryms did not grow in these mice.

"It's a misconception for people to think there is one event that activates an abdominal aortic aneurysm and that its progression is inevitable," Thompson explains. "Our studies suggest there is ongoing inflammation that waxes and wanes over many years, and that the "trigger" actually occurs over and over again."

Smokers and people over age 65 are most at risk for developing abdominal aortic aneurysms. Their incidence is expected to rise dramatically over the next decade as the baby boomer generation ages. The current research will play a critical role in developing new medical treatments for aortic aneurysms in this generation of patients, the Washington University scientists say.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Critical DPPI Thompson abdominal aortic neutrophils

More articles from Life Sciences:

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

nachricht World first for reading digitally encoded synthetic molecules
17.10.2017 | CNRS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>