Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme critical for early growth of abdominal aortic aneurysms

15.02.2007
Surgery is the only treatment for an abdominal aortic aneurysm, a weak spot in the body's main artery that dilates dangerously over time. If the vessel ruptures suddenly before surgery to repair it, a quick death is virtually certain.

Now, scientists say they have identified a key enzyme that triggers chronic inflammation in the aorta and promotes the growth of aneurysms. Their finding raises hopes for developing a drug that could prevent small aneurysms from enlarging to the point where surgery is necessary.

Genetically engineered mice that lack the enzyme dipeptidyl peptidase I (DPPI) do not develop aortic aneurysms, researchers at Washington University School of Medicine in St. Louis report in the online edition of the Proceedings of the National Academy of Sciences U.S.A. "We think DPPI is a viable therapeutic target that may keep the growth of aortic aneurysms in check, so they don't become life threatening," says Robert W. Thompson, M.D., professor of surgery and one of the senior investigators on the article.

The new research shows that DPPI is critical for the recruitment of inflammatory cells to the aortic wall, and that these cells push the inflammation from an acute phase into a chronic phase. The researchers suspect that this chronic inflammation eventually causes other enzymes to eat away at the structural proteins of the aorta, causing the vessel to balloon slowly and ultimately rupture in patients whose aortas are greatly distended.

... more about:
»Critical »DPPI »Thompson »abdominal »aortic »neutrophils

Abdominal aortic aneurysms kill about 15,000 Americans each year and have claimed the lives of such notables as Albert Einstein and Lucille Ball. The condition often goes undiagnosed because small aneurysms rarely cause symptoms. Typically, they are discovered by accident when patients have an X-ray or ultrasound for another medical concern.

If an aneurysm is small, doctors generally monitor it closely and recommend surgery only if its diameter grows larger than 5.5 centimeters (about 2 inches). Eventually, 60 percent of patients with small aneurysms will require surgery, a procedure that costs about $20,000. A drug treatment that could help patients avoid the risks and the high cost of major surgery would be ideal, Thompson says.

In the current study, the researchers used an experimental model in mice that mimics aortic aneurysms in humans. They perfused the enzyme elastase into the aortas of the mice, causing the aortic wall to dilate. Two weeks later, the aortas of DPPI-deficient mice had not enlarged much, while the aortas of the normal mice had nearly doubled in diameter.

When the investigators probed further, they found high levels of inflammatory cells in the ballooning aortas of the normal mice but few such cells in the aortas of the mice that lacked DPPI. "Without DPPI, the inflammatory response never really gets going, and the mice don't develop aneurysms," says senior author Monica Pagano, M.D.

Thompson's group became interested in DPPI several years ago when their own genetic studies revealed it is elevated in tissues from both human and mouse aneurysms. The enzyme is found in many cells, including neutrophils. Scientists had thought that the primary role of this enzyme was to degrade proteins. However, new research at Washington University and elsewhere suggests that its functions lie beyond its degrading activity.

Christine Pham, M.D., assistant professor of medicine and the other senior author, developed the DPPI-deficient mouse model and showed that this enzyme modulates many inflammatory processes through the activation of a cascade of enzymes. The work exemplifies the type of scientific collaboration that leads to novel insights by melding together the interests of two laboratories - one led by Thompson that focuses on a clinical problem and the other led by Pham that centers on particular molecular pathways of disease.

In the new research, the scientists confirmed the crucial role of neutrophil-associated DPPI when they depleted neutrophils in normal mice and then perfused their aortas with elastase. This time, the animals did not develop aneurysms. Conversely, when they transferred normal neutrophils into the DPPI-deficient mice, they went on to develop aneurysms.

The researchers found the neutrophils that gather at the site of aortic injury send out a distress call in the form of a chemical, CXCL2, which sustains the inflammation by sending even more neutrophils to the aortic wall. Eventually, the overwhelming inflammatory response summons other enzymes to the aortic wall to breakdown its structural component, elastin.

When the researchers blocked the action of CXCL2 in mice, neutrophils did not congregate at the aortic wall because there was no signal leading them there, and aneuryms did not grow in these mice.

"It's a misconception for people to think there is one event that activates an abdominal aortic aneurysm and that its progression is inevitable," Thompson explains. "Our studies suggest there is ongoing inflammation that waxes and wanes over many years, and that the "trigger" actually occurs over and over again."

Smokers and people over age 65 are most at risk for developing abdominal aortic aneurysms. Their incidence is expected to rise dramatically over the next decade as the baby boomer generation ages. The current research will play a critical role in developing new medical treatments for aortic aneurysms in this generation of patients, the Washington University scientists say.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Critical DPPI Thompson abdominal aortic neutrophils

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>