Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme critical for early growth of abdominal aortic aneurysms

15.02.2007
Surgery is the only treatment for an abdominal aortic aneurysm, a weak spot in the body's main artery that dilates dangerously over time. If the vessel ruptures suddenly before surgery to repair it, a quick death is virtually certain.

Now, scientists say they have identified a key enzyme that triggers chronic inflammation in the aorta and promotes the growth of aneurysms. Their finding raises hopes for developing a drug that could prevent small aneurysms from enlarging to the point where surgery is necessary.

Genetically engineered mice that lack the enzyme dipeptidyl peptidase I (DPPI) do not develop aortic aneurysms, researchers at Washington University School of Medicine in St. Louis report in the online edition of the Proceedings of the National Academy of Sciences U.S.A. "We think DPPI is a viable therapeutic target that may keep the growth of aortic aneurysms in check, so they don't become life threatening," says Robert W. Thompson, M.D., professor of surgery and one of the senior investigators on the article.

The new research shows that DPPI is critical for the recruitment of inflammatory cells to the aortic wall, and that these cells push the inflammation from an acute phase into a chronic phase. The researchers suspect that this chronic inflammation eventually causes other enzymes to eat away at the structural proteins of the aorta, causing the vessel to balloon slowly and ultimately rupture in patients whose aortas are greatly distended.

... more about:
»Critical »DPPI »Thompson »abdominal »aortic »neutrophils

Abdominal aortic aneurysms kill about 15,000 Americans each year and have claimed the lives of such notables as Albert Einstein and Lucille Ball. The condition often goes undiagnosed because small aneurysms rarely cause symptoms. Typically, they are discovered by accident when patients have an X-ray or ultrasound for another medical concern.

If an aneurysm is small, doctors generally monitor it closely and recommend surgery only if its diameter grows larger than 5.5 centimeters (about 2 inches). Eventually, 60 percent of patients with small aneurysms will require surgery, a procedure that costs about $20,000. A drug treatment that could help patients avoid the risks and the high cost of major surgery would be ideal, Thompson says.

In the current study, the researchers used an experimental model in mice that mimics aortic aneurysms in humans. They perfused the enzyme elastase into the aortas of the mice, causing the aortic wall to dilate. Two weeks later, the aortas of DPPI-deficient mice had not enlarged much, while the aortas of the normal mice had nearly doubled in diameter.

When the investigators probed further, they found high levels of inflammatory cells in the ballooning aortas of the normal mice but few such cells in the aortas of the mice that lacked DPPI. "Without DPPI, the inflammatory response never really gets going, and the mice don't develop aneurysms," says senior author Monica Pagano, M.D.

Thompson's group became interested in DPPI several years ago when their own genetic studies revealed it is elevated in tissues from both human and mouse aneurysms. The enzyme is found in many cells, including neutrophils. Scientists had thought that the primary role of this enzyme was to degrade proteins. However, new research at Washington University and elsewhere suggests that its functions lie beyond its degrading activity.

Christine Pham, M.D., assistant professor of medicine and the other senior author, developed the DPPI-deficient mouse model and showed that this enzyme modulates many inflammatory processes through the activation of a cascade of enzymes. The work exemplifies the type of scientific collaboration that leads to novel insights by melding together the interests of two laboratories - one led by Thompson that focuses on a clinical problem and the other led by Pham that centers on particular molecular pathways of disease.

In the new research, the scientists confirmed the crucial role of neutrophil-associated DPPI when they depleted neutrophils in normal mice and then perfused their aortas with elastase. This time, the animals did not develop aneurysms. Conversely, when they transferred normal neutrophils into the DPPI-deficient mice, they went on to develop aneurysms.

The researchers found the neutrophils that gather at the site of aortic injury send out a distress call in the form of a chemical, CXCL2, which sustains the inflammation by sending even more neutrophils to the aortic wall. Eventually, the overwhelming inflammatory response summons other enzymes to the aortic wall to breakdown its structural component, elastin.

When the researchers blocked the action of CXCL2 in mice, neutrophils did not congregate at the aortic wall because there was no signal leading them there, and aneuryms did not grow in these mice.

"It's a misconception for people to think there is one event that activates an abdominal aortic aneurysm and that its progression is inevitable," Thompson explains. "Our studies suggest there is ongoing inflammation that waxes and wanes over many years, and that the "trigger" actually occurs over and over again."

Smokers and people over age 65 are most at risk for developing abdominal aortic aneurysms. Their incidence is expected to rise dramatically over the next decade as the baby boomer generation ages. The current research will play a critical role in developing new medical treatments for aortic aneurysms in this generation of patients, the Washington University scientists say.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Critical DPPI Thompson abdominal aortic neutrophils

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>