Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of a universal tRNA feature reported

09.02.2007
Scientists at the Virginia Bioinformatics Institute (VBI) report in the Journal of Bacteriology that two alphaproteobacteria lack the universal extra guanylate nucleotide typically found in the transfer RNA molecule tRNAHis.

tRNAs are the molecules responsible for decoding sequence information specified by messenger RNA molecules, information which is ultimately encoded by the DNA template.

tRNAHis is the specific tRNA that assists in incorporating the amino acid histidine into new proteins. Histidine residues make essential contributions to protein structure as well as the catalytic mechanisms of enzymes and must be reliably incorporated during the process of translation.

Until now, bacterial, archaeal, and eukaryotic tRNAs have always been found with an extra guanylate residue at the 5' end of the tRNA molecule. The scientists, led by Kelly Williams of VBI, have shown that tRNAs carrying the amino acid histidine in the alphaproteobacteria Sinorhizobium meliloti and Caulobacter crescentus apparently lack the universal guanylate residue.

... more about:
»RNA »alphaproteobacteria »guanylate »tRNA »tRNAHis

Kelly Williams, research investigator at VBI, remarked: "The loss of a universal and apparently ancient tRNA feature in two members of the alphaproteobacteria was particularly surprising as it represents a radical departure from previously known identity rules for the histidine-carrying tRNAs." He added: "This result implies that tRNA recognition by the enzyme adding histidine to tRNA differs considerably from similar enzymes in other organisms. We have indeed been able to detect an impact on particular regions of the histidyl-tRNA synthetase that are critical for recognizing tRNA."

The researchers used bioinformatic tools such as a computer script – specifically written by the group – to probe the tRNA genes in the alphaproteobacteria group. Examination of the corrected tRNAHis sequences revealed that a group of alphaproteobacteria fails to encode a G (guanylate) at the -1 position of the tRNA as all other bacteria do. Amplification and tRNA sequencing approaches were used to confirm the findings.

Sinorhizobium meliloti and Caulobacter crescentus are members of the alphaproteobacteria, a group of diverse organisms whose members have successfully adopted different lifestyle and energy-yielding strategies in the course of evolution. The organisms are members of a specific group of alphaproteobacteria that comprises the Rhizobiales, Rhodobacterales, Caulobacterales, Parvularculales and Pelagibacter.

Dieter Söll, Sterling Professor of Molecular Biophysics and Biochemistry in the Department of Molecular Biophysics and Biochemistry at Yale University, commented: "The observed absence of the extra guanylate in tRNAHis is a unique case of divergence from a highly conserved ancient tRNA recognition mechanism by an aminoacyl-tRNA synthetase. It will be of special interest to examine if the loss of this tRNA feature has resulted from the presence of an RNase P enzyme that is no longer capable of catalyzing abnormal cleavage at the -1 position in the tRNAHis precursor. It will also be revealing to see how different aminoacyl-tRNA synthetases have adapted to discriminate between their cognate or related substrates and the now less distinctive tRNAHis."

Barry Whyte | EurekAlert!
Further information:
http://vwww.vt.edu

Further reports about: RNA alphaproteobacteria guanylate tRNA tRNAHis

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>