Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-assembling nanostructures of DNA
-- a biotechnologist's dream

05.02.2007
Wouldn't it be great if we could get computer chips to grow on trees?

Or at least use the specific bonds of DNA molecules to get nanostructures to grow themselves right in the test tube? This technology could be used to build everything from tiny electronics components to machines that sequence DNA. This is shown in a dissertation from Mid Sweden University.

Building structures as tiny as a few nanometers is a major problem with today's technology. This is an important hurdle, because really tiny things can be extremely useful. Good examples are microelectronics ¬the smaller you can make the components on a chip, the faster you will be able to carry out calculations on it.

"The method we have developed for self-assembling blocks of DNA and gold particles is absolutely unique. The method can be used, for instance, to produce tiny nano carriers for drugs that can be emptied directly in cells on a given chemical signal," says Björn Högberg.

Björn Högberg has also taken a close look at a method for building nanostructures with the help of DNA that was invented by a a US researcher in the spring of 2006. The method is called 'DNA origami' and involves, in brief, folding or splicing together a long string of DNA with the aid of a large number of short strings (''staple DNA').

"In my dissertation I propose just how this technology could be used to construct a facility for extremely rapid DNA sequencing, which is a biotechnologist's dream," says Björn Högberg.

The title of the dissertation is DNA-Mediated Self-Assembly of Nanostructures; Theory and Experiments.

Lars Aronsson | idw
Further information:
http://www.tfm.miun.se/~bjohog/index.html#publications

Further reports about: DNA Högberg Nanostructures biotechnologist'

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>