Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lead with a Poisonous Electron Shield

16.01.2007
A free pair of electrons may be the source of lead¡¯s toxicity

It has been speculated that lead poisoning may have played a role in the fall of the Roman Empire: it is thought to have been caused by the concentration of grape juice in lead containers.

Though the introduction of lead-free gasoline has reduced damage to the environment, the annual production of lead continues to increase worldwide because lead is still used in batteries, glass, and electronic components. However, there has thus far been little research into what, at a molecular level, causes the toxic effects of lead. French researchers have now applied quantum chemistry to very simple enzyme models and gained new insights. As they have reported in Angewandte Chemie, it seems that the lead¡¯s ¡°electron shield¡± is the main culprit.

Lead does the most damage to the nervous system, kidneys, liver, brain, and blood. These kinds of damage are especially severe for children as they can be irreversible. Complexation agents that grab onto the metal cations are used as antidotes. However, these agents are not lead-specific, meaning that they also remove other important metal cations from the body.

... more about:
»Ligand »bind »cation »enzyme

C. Gourlaouen and O. Parisel (Laboratoire de Chimie Th¨¦orique, Universit¨¦ Paris 6) took a closer look at two proteins to which lead likes to bind. Calmodulin, a calcium-binding protein, plays an important role in regulating and transporting the calcium cation in the human body. A calcium ion binds to seven ligands at the active centers of the enzyme. If one of the four possible calcium ions of calmodulin is replaced by lead, the lead ion remains roughly heptacoordinated, but this active center becomes distorted and inefficient; the three remaining sites get a reduced efficiency.

¦Ä-Aminolevulinic acid dehydratase is essential for the biosynthesis of hemoglobin. Inhibition of this enzyme disrupts the formation of blood to the point of anemia. At the active center, a zinc ion binds to four ligands, three of which involve a sulfur atom. When lead replaces zinc, it only binds to the three sulfur atoms. The reason for this is the emerging free electron pair of the lead cation. It acts as an electronic shield on one side, pushing away the fourth ligand. Such a dramatic geometrical distortion at the active center could explain why lead inhibits this enzyme.

The different behavior of lead in these two enzymes demonstrates that it can enter into complexes in which the metal¨Cligand bonds can either point in all directions, or into only one hemisphere, while the other hemisphere is filled by the free electron pair. This observation may help in the design of future lead-specific antidotes.

Author: Olivier Parisel, Universit¨¦ Pierre et Marie Curie, Paris VI (France), http://www.lct.jussieu.fr/rubrique13.html

Title: Is an Electronic Shield at the Molecular Origin of Lead Poisoning? A Computational Modeling Experiment

Angewandte Chemie International Edition 2007, 46, No. 4, 553¨C556, doi: 10.1002/anie.200603037

Olivier Parisel | Angewandte Chemie
Further information:
http://www.lct.jussieu.fr/rubrique13.html
http://pressroom.angewandte.org.

Further reports about: Ligand bind cation enzyme

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>