Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spanish scientists reveal dynamic map of proteins

Scientists from the Institute for Research in Biomedicine (IRB Barcelona), the Life Sciences Programme at the Barcelona Supercomputing Center (BSC) and the National Institute for Bioinformatics (INB) have published a provisional “atlas” of the dynamic behaviour of proteins in the prestigious scientific journal, Proceedings of the National Academy of Sciences USA.

Proteins determine the shape and structure of cells and drive nearly all of a cell’s vital processes. All proteins carry out their functions according to the same process – by binding with other molecules. Now, the scientists have compiled a map that shows them how proteins can move and form complexes, a valuable tool that will help them understand the basic functions of the molecules, but also what happens when they function incorrectly. Such a map opens vast possibilities for the design of new drugs.

The goal of this study is to define a map of the dynamic properties of a very representative group of proteins. This involves taking stock of the basic rules that govern the flexibility of proteins and allows scientists to predict the structures that these proteins can form based on the presence of ligands or modifications. This allows scientists to go beyond the traditional simple static vision of proteins, which has not been able to capture the subtle conformational changes necessary for proteins to function. These changes modify, for example, how proteins bind to metabolites or drugs.

This is the first study of a larger scientific project, called MoDel (Molecular Dynamics Extended Library), the scope of which is even more ambitious. “MoDel aims to establish a ‘fourth dimension’ for protein structures thereby providing a complete landscape of possible conformations for the entire proteome (the complete network of protein interactions in a cell), over time. In the near future, a biochemist will be able to understand the behaviour of a protein, or design a drug that can interact with that protein, drawing on not only the knowledge of a single structure, but of an entire repertory spontaneously occurring in physiological conditions,” says project director Modesto Orozco, principal investigator of the Molecular Modelling and Bioinformatics group at IRB Barcelona, director of the Department of Life Sciences of the BSC, and Professor in the Department of Biochemistry at the University of Barcelona.

... more about:
»Dynamic »MAP »scientists

The project, financed by Genome España (through the National Institute for Bioinformatics), the Ministry of Education and Science, and the Government of Catalonia, is the joint effort of a multidisciplinary team of 15 scientists using the computing resources of the MareNostrum supercomputer, the most powerful computer in Europe, and ranked 5th in the world. During the past year, the study has involved half a million hours of computing time and 200 processors working in parallel – the equivalent of 57 years of computing time on a personal computer. “To attempt this project without the MareNostrum supercomputer would have simply been impossible,” affirms Professor Orozco. Indeed, powerful tools such as MareNostrum are allowing bioinformaticists to make unprecedented advances in the understanding of biological processes.

Source article: M.Rueda, C.Ferrer, T.Meyer, A.Pérez, J.Camps, A.Hospital, J.L.Gelpí and M.Orozco. “A consensus view of protein dynamics”.

Proc. Natl. Acad. Sci. USA. (2007) 104, 796-801.

Sarah Sherwood | alfa
Further information:

Further reports about: Dynamic MAP scientists

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>