Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain stem cells against cancer?

10.01.2007
Gliomas are a group of brain tumors where the most common type is also the most aggressive one. Chemotherapy and radiation have little effect on malignant gliomas, and patients survive only about a year after being diagnosed.

But research at Lund University in Sweden provides hope that it may be possible in the future to develop stem cells from the brain into a new way to treat gliomas.

Neural stem cells have been shown to have the ability to recognize signals from tumor cells in the brain and migrate there. If stem cells are injected into a part of the brain in laboratory animals with a glioma in another part of their brain, the stem cells migrate over to the tumor area.

This has spawned the idea of having stem cells transport drugs or immune stimulants to the tumor. This was the principle the Lund scientists wanted to test. But as it turned out, no extra assistance was needed: the stem cells themselves had the ability to combat the tumor.

... more about:
»Cancer »glioma »neural »stem cells

"We were truly amazed when we saw this effect! To be sure about the phenomenon, we ran several experiments with other stem cells, and it was confirmed that certain neural stem cells actually have an anti-tumor effect," says Karin Staflin. She is describing the findings in her dissertation, which she will soon defend.

It is as yet unknown just why this happens. One plausible reason is that both normal neural stem cells and glioma cells are immature, not fully mature cells. They are therefore more like each other than any other types of cells in the brain, which may enable them to 'speak' to each other and influence each other. The research team at Lund has also shown that stem cells can cure colon cancer in lab animals.

"Cells in aggressive malignant cancer forms are often characterized as being more immature than their environment. This may be what enables neural stem cells to affect intestinal cancer cells," says Karin Staflin.

Many years of research remain before the newly discovered principle is ready to be tested on humans. First, researchers need to learn to understand the mechanisms better and identify the factors in neural cells which make them so effective. The notion is still new, but it does provide a glimmer of hope for a cure for a thus far incurable disease.

The dissertation is titled Neural progenitor cells in malignancy and injury of the brain: A Trojan horse for gliomas? Karin Staflin can be reached at phone: +46 46-222 05 28 or cell phone: +46 70-570 05 81, e-mail: karin.staflin@med.lu.se

Ingela Björck | idw
Further information:
http://theses.lub.lu.se/postgrad/
http://www.vr.se

Further reports about: Cancer glioma neural stem cells

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>