Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find stem-cell therapy effective in targeting metastatic cancer

22.12.2006
Preclinical findings show tumors are attacked, not normal tissue

Patients with advanced cancer that has spread to many different sites often do not have many treatment options, since they would be unable to tolerate the doses of treatment they would need to kill the tumors.

Researchers at City of Hope and St. Jude Children's Research Hospital may have found a way to treat cancers that have spread throughout the body more effectively. They used modified neural stem cells to activate and concentrate chemotherapeutic drugs predominately at tumor sites, so that normal tissue surrounding the tumor and throughout the body remain relatively unharmed.

"This approach could significantly improve future treatme nt options for patients with metastatic cancer," said Karen Aboody, M.D., assistant professor of Hematology/Hematopoietic Cell Transplantation and Neurosciences at City of Hope. "It not only has the potential to destroy residual tumor cells, but it should also improve patients' quality of life by minimizing toxic side effects such as nausea, diarrhea or bone marrow suppression."

... more about:
»metastatic »neuroblastoma »stem cells

Aboody is the lead investigator of the study done in collaboration with senior investigator Mary Danks, Ph.D., associate member of Molecular Pharmacology at St. Jude Children's Research Hospital in Memphis, Tenn. The study will be published Dec. 20 in PLoS ONE. A second paper with extended results from the study has been accepted for publication in Cancer Research in January.

Most chemotherapy drugs affect both normal and cancerous tissue, which is why they also are toxic to naturally fast-growing cells in the body such as hair follicles and intestinal cells. Aboody and her colleagues have developed a two-part system to infiltrate metastatic tumor sites, and then activate a chemotherapeutic drug, thereby localizing the drug's effects to the tumor cells.

The technique takes advantage of the tendency for invasive tumors to attract neural stem cells. The researchers injected modified neural stem/progenitor cells into immunosuppressed mice that had been given neuroblastoma cells, which then formed tumors. After waiting a few days to allow the stem cells to migrate to the tumors, researchers administered a precursor-drug. When it reached the stem cells, the drug interacted with an enzyme the stem cells expressed, and was converted into an active drug that kills surrounding tumor cells. The precursor-drugs were administered for two weeks, then after a two-week break, a second round of stem/progenitor cells and drugs were administered.

One hundred percent of the neuroblastoma mice appe ared healthy and tumor-free at six months. Without treatment, all the neuroblastoma mice died within two-and-a-half months.

The results hold promise for treating solid tumors that metastasize including neuroblastoma, which represents 6 percent to 10 percent of all childhood cancers worldwide, with higher proportions in children under 2 years of age.

"The results are especially important in the case of high-risk neuroblastoma, because treatment-resistant cancer returns in as many as 80 percent of children, and the majority die of their disease," said co-principal investigator Danks.

Aboody and her colleagues had previously published the efficacy of this technique in primary and metastatic tumors in the brain. This is the first research to demonstrate that it is also effective in a metastatic cancer model, targeting multiple solid tumor sites spread throughout the body. They speculate that the technique could also be applie d to other malignant solid tumors, including colon, brain, prostate and breast cancer, and are planning future preclinical trials using those tumors as well.

Kathleen O’Neil | EurekAlert!
Further information:
http://www.coh.org

Further reports about: metastatic neuroblastoma stem cells

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>