Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find stem-cell therapy effective in targeting metastatic cancer

22.12.2006
Preclinical findings show tumors are attacked, not normal tissue

Patients with advanced cancer that has spread to many different sites often do not have many treatment options, since they would be unable to tolerate the doses of treatment they would need to kill the tumors.

Researchers at City of Hope and St. Jude Children's Research Hospital may have found a way to treat cancers that have spread throughout the body more effectively. They used modified neural stem cells to activate and concentrate chemotherapeutic drugs predominately at tumor sites, so that normal tissue surrounding the tumor and throughout the body remain relatively unharmed.

"This approach could significantly improve future treatme nt options for patients with metastatic cancer," said Karen Aboody, M.D., assistant professor of Hematology/Hematopoietic Cell Transplantation and Neurosciences at City of Hope. "It not only has the potential to destroy residual tumor cells, but it should also improve patients' quality of life by minimizing toxic side effects such as nausea, diarrhea or bone marrow suppression."

... more about:
»metastatic »neuroblastoma »stem cells

Aboody is the lead investigator of the study done in collaboration with senior investigator Mary Danks, Ph.D., associate member of Molecular Pharmacology at St. Jude Children's Research Hospital in Memphis, Tenn. The study will be published Dec. 20 in PLoS ONE. A second paper with extended results from the study has been accepted for publication in Cancer Research in January.

Most chemotherapy drugs affect both normal and cancerous tissue, which is why they also are toxic to naturally fast-growing cells in the body such as hair follicles and intestinal cells. Aboody and her colleagues have developed a two-part system to infiltrate metastatic tumor sites, and then activate a chemotherapeutic drug, thereby localizing the drug's effects to the tumor cells.

The technique takes advantage of the tendency for invasive tumors to attract neural stem cells. The researchers injected modified neural stem/progenitor cells into immunosuppressed mice that had been given neuroblastoma cells, which then formed tumors. After waiting a few days to allow the stem cells to migrate to the tumors, researchers administered a precursor-drug. When it reached the stem cells, the drug interacted with an enzyme the stem cells expressed, and was converted into an active drug that kills surrounding tumor cells. The precursor-drugs were administered for two weeks, then after a two-week break, a second round of stem/progenitor cells and drugs were administered.

One hundred percent of the neuroblastoma mice appe ared healthy and tumor-free at six months. Without treatment, all the neuroblastoma mice died within two-and-a-half months.

The results hold promise for treating solid tumors that metastasize including neuroblastoma, which represents 6 percent to 10 percent of all childhood cancers worldwide, with higher proportions in children under 2 years of age.

"The results are especially important in the case of high-risk neuroblastoma, because treatment-resistant cancer returns in as many as 80 percent of children, and the majority die of their disease," said co-principal investigator Danks.

Aboody and her colleagues had previously published the efficacy of this technique in primary and metastatic tumors in the brain. This is the first research to demonstrate that it is also effective in a metastatic cancer model, targeting multiple solid tumor sites spread throughout the body. They speculate that the technique could also be applie d to other malignant solid tumors, including colon, brain, prostate and breast cancer, and are planning future preclinical trials using those tumors as well.

Kathleen O’Neil | EurekAlert!
Further information:
http://www.coh.org

Further reports about: metastatic neuroblastoma stem cells

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>