Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenetic drugs, promising for breast cancer treatment

21.12.2006
Worldwide, cancer persists as one of the most important diseases that affect the human being.

The knowledge on the molecular bases of cancer generated during the last decades has been successfully translated into small but significant gains in overall cancer survival rates due to better primary prevention measures, improved diagnostic methods and the development of more effective and specific therapies, collectively termed “molecular targeted therapies”. In the context of these new forms of treatment, epigenetic or transcriptional cancer therapy is clearly promising.

Epigenetics refers to the function of DNA that does not depend on the coding DNA sequence itself but on the accessory molecules and mechanisms affected by DNA. It is known that epigenetic alterations are equally if not more important than classical genetic alterations to disrupt the function of tumour suppressor genes. The two most studied epigenetic aberrations common to all types of cancer are DNA hypermethylation and histone deacetylation, which cooperate to silence the expression of tumour suppressor genes, just as gene mutations and gene deletions do. The big difference between these two alternative ways that tumour cells use to inactivate tumour suppressor genes is that, while the reversal of genetic alterations is technically almost unfeasible in clinical scenarios, the function of these epigenetically inactivated suppressor genes is easily reactivated by pharmacological means. In this inaugural issue of PLoS ONE, Dr Dueñas-Gonzalez’s group from the Instituto de Investi gaciones Biomédicas of the Universidad Nacional Autónoma de México and the Instituto Nacional de Cancerología, Mexico, demonstrate, for the first time, that a combination of a DNA methylation and a histone deacetylase inhibitor, can reactivate the expression of more than a thousand genes in primary tumours of breast cancer patients.

Among these reactivated genes are those implicated in the regulation of cell proliferation, cell differentiation, programmed cell death, invasion, metastasis and immune recognition of tumour cells, such as p53, p21, eighteen members of the oxidative phosphorylation pathway, interferon-regulatory factors, NM23, negative regulators of Wnt signalling and Major Histocompatibility Complex Class-I and –II genes. In addition, these drugs down-regulate genes such as ABCB5, a recently identified member of the ABC transporter family implicated in multidrug resistance, which is predominantly expressed by tumour “stem” cells. Moreover, in this proof-of-principle study, the Mexican researchers demonstrate that this combination of epigenetic drugs can be safely administered concurrently with classical cytotoxic agents such as doxorubicin and cyclophosphamide, a common drug combination employed in the primary treatment of breast cancer.

... more about:
»Cancer »DNA »epigenetic »patients »suppressor

Although this study is suggestive of increased anti-tumour effects no definitive conclusions can be drawn from it regarding the clinical efficacy of this therapy, because the study is single arm and the number of patients small; however, it is clearly suggestive that the epigenetic “principle” works and calls for increased preclinical and clinical efforts toward epigenetic cancer therapy.

Researchers used “epigenetic” drugs routinely employed for non-malignant conditions

One important aspect of this study, considers Dr Dueñas-Gonzalez, is that the “epigenetic” drugs used, are “very-well known” and have been routinely employed for almost 30 years to treat non-malignant conditions: the antihypertensive hydralazine and the antiepileptic valproic acid. Advocacy groups are claiming that “big pharma” companies are not interested in pursuing the preclinical and clinical development of this type of drugs –regardless of their potential antitumour efficacy– simply because they cannot be protected by patents and in consequence huge revenues cannot be expected. If the antitumour efficacy of these epigenetic drugs is eventually demonstrated, they would not only be added to the current anticancer armamentarium, but they will surely be affordable to the vast majority of cancer patients living in low and middle income countries, who find the newer anticancer agents prohibitively expensive. Dr Dueñas-Gonzalez’s group has recently completed a couple of single arm studies of this therapy with similar results and launched three placebo-controlled randomised trials in breast, ovarian and cervical cancer patients.

Rosalba Namihira | alfa
Further information:
http://www.biomedicas.unam.mx
http://dx.doi.org/10.1371/journal.pone.0000098

Further reports about: Cancer DNA epigenetic patients suppressor

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>