Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist discovers some mammals can smell objects under water

21.12.2006
A Vanderbilt researcher has discovered that some stealthy mammals have been doing something heretofore thought impossible – using the sense of smell under water.

The results of the research by Vanderbilt’s Kenneth Catania, assistant professor of biology, were reported Dec. 21 in the science journal Nature. He became curious when he observed that a mole he was studying blew a lot of bubbles while swimming.

“This came as a total surprise because the common wisdom is that mammals can’t smell underwater,’ said Catania, who earlier this year won a $500,000 “genius grant” from the John D. and Catherine T. MacArthur Foundation.

“When mammals adapt to living in water, their sense of smell usually degenerates. The primary example is the cetaceans – whales and dolphins – many of which have lost their sense of smell.”

... more about:
»Catania »Sniffing »TRAIL »mammal »semi-aquatic »star-nosed

Catania devised a series of experiments to determine whether the star-nosed mole and another small, semi-aquatic mammal - the water shrew - can smell objects underwater. Using a high-speed camera, he discovered how they do it.

After observing that the moles were blowing bubbles out of their nostrils and then sucking them right back in, he determined they were exhaling and inhaling the bubbles rapidly, between five and 10 times per second. That is about the same rate as the sniffing behavior of comparably sized land mammals, like rats and mice. “Rats and mice don’t sniff the way we do,” Catania said. “They push air ‘out-in out-in’ in a fashion strikingly similar to what the star-nosed mole is doing, except that it is doing it under water.”

Catania mounted a high-speed video camera so that it pointed up through the bottom of a glass tank. Then he stuck various objects on the bottom of the tank – pieces of earthworm, small fish, insect cuticle and blobs of wax and silicon – and observed the moles’ behavior. He saw that, when the moles approached one of these targets, they would blow bubbles that came into contact with the target’s surface and then were sucked back into the nostrils.

“Because the olfactory nerves in the nose are covered with mucous, odorant molecules are all water soluble,” Catania said. “So, when these bubbles come into contact with an object, it is almost inevitable that odorant molecules will mix with the air and be drawn into the nose when the bubble is inhaled.”

Just because the moles are getting whiffs of interesting odors underwater doesn’t necessarily mean they smell them.

So Catania devised some additional tests.

One of the complicating factors was the star-nosed mole’s unusual nose, which is ringed by a star-shaped set of fleshy appendages. It uses its star like a super-sensitive set of fingers to identify objects it encounters while burrowing and swimming. So, at the same time it is sniffing at an object it is also fingering it with its star.

To determine if the mole can identify edible objects by sniffing alone, Catania created underwater scent trails leading to food and recorded how well the moles could follow them. To keep the moles from using their tactile star, he put a grid-work between the animals and the scent trails. The openings in the grid were too small for the star appendages to squeeze through but large enough so the air bubbles could pass without difficulty.

These trials demonstrated that the moles could follow the scent trail by sniffing alone (without the tactile star). Five moles were tested on earthworm scent trails and followed the trail to its reward with accuracies ranging from 75 percent to 100 percent accuracy. Two moles were tested with fish scent trails and followed them with 85 percent and 100 percent accuracy.

When the grid was replaced with a screen with openings too small for the air bubbles to pass through, however, the moles’ performance dropped down to the level of chance – the same as their performance with no-scent trails.

In order to see if this capability was limited to the star-nosed mole or if other small semi-aquatic mammals also have it, Catania captured some water shrews and began testing them. He found that they also exhibit this underwater sniffing behavior and can use it to follow underwater scent trails.

“Now, the question is, ‘What other semi-aquatic mammals do this?’” Catania said. “Do animals like otters and seals do anything similar? Or is there a size limit and it only works for smaller mammals?”

He hopes that publication of his paper will encourage researchers who are studying all kinds of semi-aquatic animals to take a closer look at how they are using their noses underwater.

The research was funded by a Faculty Early Career Development award from the National Science Foundation.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

Further reports about: Catania Sniffing TRAIL mammal semi-aquatic star-nosed

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>