Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist discovers some mammals can smell objects under water

21.12.2006
A Vanderbilt researcher has discovered that some stealthy mammals have been doing something heretofore thought impossible – using the sense of smell under water.

The results of the research by Vanderbilt’s Kenneth Catania, assistant professor of biology, were reported Dec. 21 in the science journal Nature. He became curious when he observed that a mole he was studying blew a lot of bubbles while swimming.

“This came as a total surprise because the common wisdom is that mammals can’t smell underwater,’ said Catania, who earlier this year won a $500,000 “genius grant” from the John D. and Catherine T. MacArthur Foundation.

“When mammals adapt to living in water, their sense of smell usually degenerates. The primary example is the cetaceans – whales and dolphins – many of which have lost their sense of smell.”

... more about:
»Catania »Sniffing »TRAIL »mammal »semi-aquatic »star-nosed

Catania devised a series of experiments to determine whether the star-nosed mole and another small, semi-aquatic mammal - the water shrew - can smell objects underwater. Using a high-speed camera, he discovered how they do it.

After observing that the moles were blowing bubbles out of their nostrils and then sucking them right back in, he determined they were exhaling and inhaling the bubbles rapidly, between five and 10 times per second. That is about the same rate as the sniffing behavior of comparably sized land mammals, like rats and mice. “Rats and mice don’t sniff the way we do,” Catania said. “They push air ‘out-in out-in’ in a fashion strikingly similar to what the star-nosed mole is doing, except that it is doing it under water.”

Catania mounted a high-speed video camera so that it pointed up through the bottom of a glass tank. Then he stuck various objects on the bottom of the tank – pieces of earthworm, small fish, insect cuticle and blobs of wax and silicon – and observed the moles’ behavior. He saw that, when the moles approached one of these targets, they would blow bubbles that came into contact with the target’s surface and then were sucked back into the nostrils.

“Because the olfactory nerves in the nose are covered with mucous, odorant molecules are all water soluble,” Catania said. “So, when these bubbles come into contact with an object, it is almost inevitable that odorant molecules will mix with the air and be drawn into the nose when the bubble is inhaled.”

Just because the moles are getting whiffs of interesting odors underwater doesn’t necessarily mean they smell them.

So Catania devised some additional tests.

One of the complicating factors was the star-nosed mole’s unusual nose, which is ringed by a star-shaped set of fleshy appendages. It uses its star like a super-sensitive set of fingers to identify objects it encounters while burrowing and swimming. So, at the same time it is sniffing at an object it is also fingering it with its star.

To determine if the mole can identify edible objects by sniffing alone, Catania created underwater scent trails leading to food and recorded how well the moles could follow them. To keep the moles from using their tactile star, he put a grid-work between the animals and the scent trails. The openings in the grid were too small for the star appendages to squeeze through but large enough so the air bubbles could pass without difficulty.

These trials demonstrated that the moles could follow the scent trail by sniffing alone (without the tactile star). Five moles were tested on earthworm scent trails and followed the trail to its reward with accuracies ranging from 75 percent to 100 percent accuracy. Two moles were tested with fish scent trails and followed them with 85 percent and 100 percent accuracy.

When the grid was replaced with a screen with openings too small for the air bubbles to pass through, however, the moles’ performance dropped down to the level of chance – the same as their performance with no-scent trails.

In order to see if this capability was limited to the star-nosed mole or if other small semi-aquatic mammals also have it, Catania captured some water shrews and began testing them. He found that they also exhibit this underwater sniffing behavior and can use it to follow underwater scent trails.

“Now, the question is, ‘What other semi-aquatic mammals do this?’” Catania said. “Do animals like otters and seals do anything similar? Or is there a size limit and it only works for smaller mammals?”

He hopes that publication of his paper will encourage researchers who are studying all kinds of semi-aquatic animals to take a closer look at how they are using their noses underwater.

The research was funded by a Faculty Early Career Development award from the National Science Foundation.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

Further reports about: Catania Sniffing TRAIL mammal semi-aquatic star-nosed

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>