Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New Species Of Fish In Antarctic

20.12.2006
What's 34 centimeters (13.39 inches) long, likes the cold and has an interorbital pit with two openings? The answer is Cryothenia amphitreta, a newly discovered Antarctic fish discovered by a member of a research team from the University of Illinois at Urbana-Champaign.
The new species of nototheniid fish, Cryothenia amphitreta, is detailed in the December issue of the quarterly journal Copeia. Paul A. Cziko, a research specialist who had graduated with bachelor's degrees in animal biology and biochemistry from Illinois six months earlier, and research diver Kevin Hoefling, discovered it in McMurdo Sound in the Ross Sea region of Antarctica in November 2004.

They were diving in the area in search of eggs laid by naked dragonfish (Gymnodraco acuticeps) for a study, published earlier this year, about levels of antifreeze proteins in newly hatched notothenioids in the salty icy waters where the temperature is rarely above the freezing point of seawater.

"We just came across this fish," Cziko recalled. "It was just sitting on the bottom, like most other fish in the area. There are only about a dozen species that swim in the area, with four to five easily distinguishable species. This one jumped out at us. First of all it was pretty big, and it looked quite different than the others."

Cziko and Hoefling guided the egg-laden fish into a mesh bag and surfaced.

"It was about twice as big as what you normally see swimming around," said Arthur L. DeVries, a professor of animal biology who many years earlier had discovered antifreeze proteins in notothenioids. "Its profile was much different than other common local notothenioids. Its center part is much higher. Most of the other species in the area have big heads and have bodies that taper back narrowly."

Cziko and co-author Chi-Hing (Christina) Cheng, professor of animal biology, studied the purple-gold-colored fish, comparing its measurements and perch-like appearance with all known species of fish that inhabit the icy waters of Antarctica. X-ray radiographs of bone structures were taken at the U. of I. College of Veterinary Medicine.

The new fish, which DeVries theorizes may have been looking for a place to lay its eggs in a flat, clear area near an intake pipe that feeds water into the McMurdo Station, was placed into the genus Cryothenia because of its overall similarity to the notothenioid Cryothenia peninsulae that has only been found near the Antarctica Peninsula.

Although bigger in pelvic-fin length and body size, as well as having more vertebrae, what sets C amphitreta apart from C. peninsulae is head morphology, specifically in the area between the eyes.

The new fish has a "wide, well-defined, two-holed interorbital pit divided by a raised medial ridge, scales anterior to this depression in the interorbital region, and a dark pigmentation of the mouth, gill and body cavity linings," Cziko and Cheng wrote.

The species name was chosen to help researchers easily distinguish the two species in the genus Cryothenia, which translates from Greek as "from the cold," while amphitreta literally means "an orifice with two openings."

"Even though we know a lot about Antarctica," Cziko said, "we still don't know everything about the ecosystems and the animals in them. There's probably a lot more to be learned about how these fish evolved and survived."

The area where C. amphitreta was found is the most-frequented location in McMurdo Sound explored by divers and fished with hand lines. DeVries has been going to the site for more than 40 years.

The new fish was located on a large flat rock in water that was minus 1.91 degrees Celsius and 20 meters deep.

"Art has been swimming there for more than 40 years," Cziko said. "You'd think he would have caught everything." DeVries does have an Antarctic fish named after him: Paraliparis devriesii.

National Science Foundation grants to Cheng and DeVries funded the research.

Editor's notes: To reach Paul Cziko: e-mail pcziko@gmail.com.

To reach Chi-Heng (Christina) Cheng, call 217-333-4245; e-mail: c-cheng@uiuc.edu.

The original draft of this news release was written by Jim Barlow, who has since become the director of science communications for the University of Oregon.

Diana Yates | University of Illinois
Further information:
http://www.news.uiuc.edu

Further reports about: Cryothenia Cziko DeVries amphitreta notothenioid

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>