Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new male-specific gene in algae unveils an origin of male and female

19.12.2006
By studying the genetics of two closely related species of green algae that practice different forms of sexual reproduction, researchers have shed light on one route by which evolution gave rise to reproduction though the joining of distinct sperm and egg cells.

The findings, which indicate that a gene underlying a more primitive system of reproduction was likely co-opted during evolution to participate in sex-specific sperm development, are reported by Hisayoshi Nozaki and colleagues at the University of Tokyo, Rikkyo (St. Paul’s) University, and Osaka University. The paper appears in the December 19th issue of the journal Current Biology, published by Cell Press.

The familiar notion of the separate male and female sexes exhibited by animal and plant species is based in part on the anatomically and genetically distinct gametes, sperm and egg, produced by members of each sex. But the evolutionary origin of oogamy—reproduction though joining of distinct sperm and egg cells—is in fact poorly understood. In particular, it has remained unclear how oogamy arose from isogamy, a more simple form of sex in which very similar reproductive cells take on different "mating types" but do not differentiate as distinct sperm and egg. The transition from isogamy to oogamy has apparently occurred multiple times during the evolution of animals, plants, and some algae, but how did such transitions occur"

In their new work, the researchers established a genetic connection between male sexuality of an oogamous multicellular green algae species, Pleodorina starrii, and one of the mating types of its isogamous ancestor, the unicellular alga Clamydomonas reinhardtii.

... more about:
»Evolution »MT- »Reproduction »Sex »alga »sperm

In C. reinhardtii, isogamous sexual reproduction occurs through "plus" (MT+) and "minus" (MT-) mating types. MT- represents a "dominant sex" because a particular gene, MID ("minus-dominance") of C. reinhardtii is both necessary and sufficient to cause the cells to differentiate as MT- isogametes. However, no sex-specific genes related to MID had been identified in closely related oogamous species. The researchers now report that they have successfully identified a version of the MID gene in Pleodorina starrii. This "PlestMID" gene is present only in the male genome, and it encodes a protein localized abundantly in the nuclei of mature sperm. The findings indicate that P. starrii maleness evolved from the dominant sex (MT-) of its isogamous ancestor. This breakthrough in understanding provides an opportunity to address any number of extremely interesting questions regarding evolution of oogamy and the origins of male-female dichotomy.

Erin Doonan | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Evolution MT- Reproduction Sex alga sperm

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>