Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create genetically matched embryonic stem cells for transplantation

18.12.2006
Customized cells efficiently produced from eggs alone

Researchers at Children's Hospital Boston report a new and efficient strategy, using eggs alone, for creating mouse embryonic stem cells that can be transplanted without the risk of rejection because the cells are compatible with the recipient's immune system. The findings will be published online in the journal Science on December 14.

Though done in mice, the work establishes the principle of using unfertilized eggs as a source of customized embryonic stem cells that are genetically matched to the egg donor at the genes that control recognition of cells by the immune system, making them potentially useful for transplantation therapies. There are several caveats, including the fact that only females could benefit from this technique, donating their own eggs to generate the stem cells, and concerns that the tissues derived from this special type of embryonic stem cells might not function normally.

"This technique, if proven effective in humans, offers an efficient way of generating customized stem cell lines from women," says George Q. Daley, MD, PhD, senior author on the paper, who is the Associate Director of the Children's Hospital Boston Stem Cell Program and a member of the Executive Committee of the Harvard Stem Cell Institute. "It would eliminate tissue matching and tissue rejection problems, a major obstacle to successful tissue transplantation."

Embryonic stem cells are "master cells" that can generate all tissue types in the body. In 2002, Daley's laboratory collaborated with the laboratory of Rudolf Jaenisch, PhD, of the Whitehead Institute, MIT to demonstrate the first use of another method, somatic cell nuclear transfer, to create customized embryonic stem cells to repair genetic defects in mice. But somatic cell nuclear transfer (sometimes called therapeutic cloning) is a technically demanding and inefficient process that involves transferring the nucleus of a donor cell into an egg from which the nucleus has been removed.

"We will not stop testing nuclear transfer, because it is the only means we know for generating embryonic stem cells that are genetically identical to a patient," says Daley, who heads one of two Harvard Stem Cell Institute-associated labs attempting to create human embryonic stem cells with that technique. "However, generating embryonic stem cells from unfertilized eggs is far more efficient than nuclear transfer, and therefore may allow us to move toward human applications sooner."

In the new study, Daley, first author Kitai Kim, PhD, and colleagues at Harvard Medical School, Brigham and Women's Hospital and Massachusetts General Hospital used unfertilized eggs of mice to create so-called parthenogenetic embryonic stem cells. Parthenogenesis is a method of reproduction, common in plants and in some animals, in which the female can generate offspring without the contribution of a male. It doesn't normally occur in mice, but Daley, Kim and colleagues were able to induce unfertilized mouse eggs to develop through a series of chemical treatments, then generated embryonic stem cells.

Next, they used genetic typing to identify those embryonic stem cells that shared with the egg donor the genes responsible for tissue matching, called the major histocompatibility complex (MHC). When they injected these selected embryonic stem cells into MHC-matched mice, a variety of specialized tissues formed, with no rejection and no need to suppress the recipients' immune system.

Daley's laboratory at Children's Hospital Boston is now trying to replicate its results with human eggs.

As Daley noted, there are several potential limitations to embryonic stem cells generated by parthenogenesis. First, since parthenogenetic embryonic stem cells are made from eggs, the technique is only applicable to females. (Methods exist for deriving embryonic stem cells using sperm from men, but these techniques are as technically challenging and inefficient as somatic cell nuclear transfer, Daley says.)

There are also potential safety concerns. Embryonic stem cells created through parthenogenesis have altered expression of certain genes that are "imprinted." Imprinted genes are marked for expression in a special way based on whether they are passed to offspring by the egg or the sperm. Because parthenogenetic embryonic stem cells are made from eggs only, they carry no paternally imprinted genes, and instead carry two copies of maternally imprinted genes. Altered expression of imprinted genes has been linked with cancer and poor growth in some tissues. In addition, embryonic stem cells created through parthenogenesis may have some regions of their genome that contain duplicated copies of mutant genes that have been linked with malignancies or abnormal tissue growth.

"Right now this technique is useful for basic research, but we are hopeful that parthenogenetic cells might prove useful for therapies," Daley says. "Our cells produce normal tissues in mice, and there is a report in the clinical literature of a human patient whose blood was derived entirely from parthenogenetic cells. However, we'll have to demonstrate the safety and durability of cells derived from parthenogenetic embryonic stem cells before we could imagine any clinical use."

Anna Gonski | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>