Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create genetically matched embryonic stem cells for transplantation

18.12.2006
Customized cells efficiently produced from eggs alone

Researchers at Children's Hospital Boston report a new and efficient strategy, using eggs alone, for creating mouse embryonic stem cells that can be transplanted without the risk of rejection because the cells are compatible with the recipient's immune system. The findings will be published online in the journal Science on December 14.

Though done in mice, the work establishes the principle of using unfertilized eggs as a source of customized embryonic stem cells that are genetically matched to the egg donor at the genes that control recognition of cells by the immune system, making them potentially useful for transplantation therapies. There are several caveats, including the fact that only females could benefit from this technique, donating their own eggs to generate the stem cells, and concerns that the tissues derived from this special type of embryonic stem cells might not function normally.

"This technique, if proven effective in humans, offers an efficient way of generating customized stem cell lines from women," says George Q. Daley, MD, PhD, senior author on the paper, who is the Associate Director of the Children's Hospital Boston Stem Cell Program and a member of the Executive Committee of the Harvard Stem Cell Institute. "It would eliminate tissue matching and tissue rejection problems, a major obstacle to successful tissue transplantation."

Embryonic stem cells are "master cells" that can generate all tissue types in the body. In 2002, Daley's laboratory collaborated with the laboratory of Rudolf Jaenisch, PhD, of the Whitehead Institute, MIT to demonstrate the first use of another method, somatic cell nuclear transfer, to create customized embryonic stem cells to repair genetic defects in mice. But somatic cell nuclear transfer (sometimes called therapeutic cloning) is a technically demanding and inefficient process that involves transferring the nucleus of a donor cell into an egg from which the nucleus has been removed.

"We will not stop testing nuclear transfer, because it is the only means we know for generating embryonic stem cells that are genetically identical to a patient," says Daley, who heads one of two Harvard Stem Cell Institute-associated labs attempting to create human embryonic stem cells with that technique. "However, generating embryonic stem cells from unfertilized eggs is far more efficient than nuclear transfer, and therefore may allow us to move toward human applications sooner."

In the new study, Daley, first author Kitai Kim, PhD, and colleagues at Harvard Medical School, Brigham and Women's Hospital and Massachusetts General Hospital used unfertilized eggs of mice to create so-called parthenogenetic embryonic stem cells. Parthenogenesis is a method of reproduction, common in plants and in some animals, in which the female can generate offspring without the contribution of a male. It doesn't normally occur in mice, but Daley, Kim and colleagues were able to induce unfertilized mouse eggs to develop through a series of chemical treatments, then generated embryonic stem cells.

Next, they used genetic typing to identify those embryonic stem cells that shared with the egg donor the genes responsible for tissue matching, called the major histocompatibility complex (MHC). When they injected these selected embryonic stem cells into MHC-matched mice, a variety of specialized tissues formed, with no rejection and no need to suppress the recipients' immune system.

Daley's laboratory at Children's Hospital Boston is now trying to replicate its results with human eggs.

As Daley noted, there are several potential limitations to embryonic stem cells generated by parthenogenesis. First, since parthenogenetic embryonic stem cells are made from eggs, the technique is only applicable to females. (Methods exist for deriving embryonic stem cells using sperm from men, but these techniques are as technically challenging and inefficient as somatic cell nuclear transfer, Daley says.)

There are also potential safety concerns. Embryonic stem cells created through parthenogenesis have altered expression of certain genes that are "imprinted." Imprinted genes are marked for expression in a special way based on whether they are passed to offspring by the egg or the sperm. Because parthenogenetic embryonic stem cells are made from eggs only, they carry no paternally imprinted genes, and instead carry two copies of maternally imprinted genes. Altered expression of imprinted genes has been linked with cancer and poor growth in some tissues. In addition, embryonic stem cells created through parthenogenesis may have some regions of their genome that contain duplicated copies of mutant genes that have been linked with malignancies or abnormal tissue growth.

"Right now this technique is useful for basic research, but we are hopeful that parthenogenetic cells might prove useful for therapies," Daley says. "Our cells produce normal tissues in mice, and there is a report in the clinical literature of a human patient whose blood was derived entirely from parthenogenetic cells. However, we'll have to demonstrate the safety and durability of cells derived from parthenogenetic embryonic stem cells before we could imagine any clinical use."

Anna Gonski | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>