Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers create genetically matched embryonic stem cells for transplantation

Customized cells efficiently produced from eggs alone

Researchers at Children's Hospital Boston report a new and efficient strategy, using eggs alone, for creating mouse embryonic stem cells that can be transplanted without the risk of rejection because the cells are compatible with the recipient's immune system. The findings will be published online in the journal Science on December 14.

Though done in mice, the work establishes the principle of using unfertilized eggs as a source of customized embryonic stem cells that are genetically matched to the egg donor at the genes that control recognition of cells by the immune system, making them potentially useful for transplantation therapies. There are several caveats, including the fact that only females could benefit from this technique, donating their own eggs to generate the stem cells, and concerns that the tissues derived from this special type of embryonic stem cells might not function normally.

"This technique, if proven effective in humans, offers an efficient way of generating customized stem cell lines from women," says George Q. Daley, MD, PhD, senior author on the paper, who is the Associate Director of the Children's Hospital Boston Stem Cell Program and a member of the Executive Committee of the Harvard Stem Cell Institute. "It would eliminate tissue matching and tissue rejection problems, a major obstacle to successful tissue transplantation."

Embryonic stem cells are "master cells" that can generate all tissue types in the body. In 2002, Daley's laboratory collaborated with the laboratory of Rudolf Jaenisch, PhD, of the Whitehead Institute, MIT to demonstrate the first use of another method, somatic cell nuclear transfer, to create customized embryonic stem cells to repair genetic defects in mice. But somatic cell nuclear transfer (sometimes called therapeutic cloning) is a technically demanding and inefficient process that involves transferring the nucleus of a donor cell into an egg from which the nucleus has been removed.

"We will not stop testing nuclear transfer, because it is the only means we know for generating embryonic stem cells that are genetically identical to a patient," says Daley, who heads one of two Harvard Stem Cell Institute-associated labs attempting to create human embryonic stem cells with that technique. "However, generating embryonic stem cells from unfertilized eggs is far more efficient than nuclear transfer, and therefore may allow us to move toward human applications sooner."

In the new study, Daley, first author Kitai Kim, PhD, and colleagues at Harvard Medical School, Brigham and Women's Hospital and Massachusetts General Hospital used unfertilized eggs of mice to create so-called parthenogenetic embryonic stem cells. Parthenogenesis is a method of reproduction, common in plants and in some animals, in which the female can generate offspring without the contribution of a male. It doesn't normally occur in mice, but Daley, Kim and colleagues were able to induce unfertilized mouse eggs to develop through a series of chemical treatments, then generated embryonic stem cells.

Next, they used genetic typing to identify those embryonic stem cells that shared with the egg donor the genes responsible for tissue matching, called the major histocompatibility complex (MHC). When they injected these selected embryonic stem cells into MHC-matched mice, a variety of specialized tissues formed, with no rejection and no need to suppress the recipients' immune system.

Daley's laboratory at Children's Hospital Boston is now trying to replicate its results with human eggs.

As Daley noted, there are several potential limitations to embryonic stem cells generated by parthenogenesis. First, since parthenogenetic embryonic stem cells are made from eggs, the technique is only applicable to females. (Methods exist for deriving embryonic stem cells using sperm from men, but these techniques are as technically challenging and inefficient as somatic cell nuclear transfer, Daley says.)

There are also potential safety concerns. Embryonic stem cells created through parthenogenesis have altered expression of certain genes that are "imprinted." Imprinted genes are marked for expression in a special way based on whether they are passed to offspring by the egg or the sperm. Because parthenogenetic embryonic stem cells are made from eggs only, they carry no paternally imprinted genes, and instead carry two copies of maternally imprinted genes. Altered expression of imprinted genes has been linked with cancer and poor growth in some tissues. In addition, embryonic stem cells created through parthenogenesis may have some regions of their genome that contain duplicated copies of mutant genes that have been linked with malignancies or abnormal tissue growth.

"Right now this technique is useful for basic research, but we are hopeful that parthenogenetic cells might prove useful for therapies," Daley says. "Our cells produce normal tissues in mice, and there is a report in the clinical literature of a human patient whose blood was derived entirely from parthenogenetic cells. However, we'll have to demonstrate the safety and durability of cells derived from parthenogenetic embryonic stem cells before we could imagine any clinical use."

Anna Gonski | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>