Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 5th Annual Symposium of the Centre for Genomic Regulation (CRG) will focus on Systems Biology

14.12.2006
Next 15th and 16th December world renowned scientists and experts in the field of Systems Biology from Europe and United States will join in Barcelona at the 5th Annual Symposium of the Centre for Genomic Regulation (CRG), organized by Luis Serrano, coordinator of the research programme on Systems Biology at the CRG, and director of the EMBL/CRG Systems Biology Research Unit.

It is expected the participation of the following guest speakers: Peer Bork, from EMBL in Heidelberg (Germany); Timothy Gardner, from the Boston University (USA); Mads Kaern, from the University of Ottawa (Canada); Nadav Kashtan, from the Weizmann Institute of Science in Rehovot (Israel); Patrick Lemaire, from the Developmental Biology Institute of Marseilles-Luminy (France); Martin Lercher, from the University of Bath (United Kingdom); Alfonso Martínez-Arias, from the University of Cambridge (United Kingdom); Uwe Sauer, from the Institute for Molecular Systems Biology-ETH in Zurich (Switzerland); Ricard V. Solé, from the Universitat Pompeu Fabra in Barcelona (Spain); Marc Vidal, from the Dana-Farber Institute in Boston (USA); Ron Weiss, from Princeton University (USA); Mark Isalan and James Sharpe, both from the Centre for Genomic Regulation in Barcelona (Spain).

Systems Biology is an emerging discipline that aims at a quantitative understanding of biological systems to an extent that one is able to predict its response to external (drugs) or internal (mutations) disturbances and, in the future, even to modify them rationally (Synthetic Biology). The most obvious applications of Systems Biology are in the field of medicine. At the moment, the way medicine works is by using very similar drugs and treatments for everyone. We are all aware of the multibillion losses that pharmaceutical companies have suffered in the last years due to the commercialization of drugs that, although beneficial for a large part of the population are harmful for certain groups of people. Treatment of diseases today remains still to a large extent the same as when aspirin was discovered. Essentially either serendipitously or through the identification of putative targets in basic research a massive screening is done helped or lead by design software, and candidate drugs are then tested on different systems to assess their toxicity and potency. Drugs that pass this stage are then validated by very costly medical trails involving thousands of patients.

All this procedure is very costly and inefficient and it is based on the assumption that human diseases can be cured with a single drug. However, it is quite obvious that the majority of us will not die because of a single faulty gene, but because of the combination of many small alterations on different genes (multifactorial diseases) combined with our life style. Multifactorial diseases are hard to treat since they involve more than one gene product in an organism, often working in different cellular pathways. Thus we need first to be able to understand in a global and quantitative way how a complex biological system as the human being operates, to be able to tackle in a rational way the treatment of complex diseases. This is precisely one of the aims of Systems Biology.

Gloria Lligadas | alfa
Further information:
http://www.crg.es
http://pasteur.crg.es/portal/page/portal/Internet/04_EVENTS/HIDE-EVENTS/171E603F978A20E3E04012AC0E016846

Further reports about: 5th CRG United biological system

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>