Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 5th Annual Symposium of the Centre for Genomic Regulation (CRG) will focus on Systems Biology

14.12.2006
Next 15th and 16th December world renowned scientists and experts in the field of Systems Biology from Europe and United States will join in Barcelona at the 5th Annual Symposium of the Centre for Genomic Regulation (CRG), organized by Luis Serrano, coordinator of the research programme on Systems Biology at the CRG, and director of the EMBL/CRG Systems Biology Research Unit.

It is expected the participation of the following guest speakers: Peer Bork, from EMBL in Heidelberg (Germany); Timothy Gardner, from the Boston University (USA); Mads Kaern, from the University of Ottawa (Canada); Nadav Kashtan, from the Weizmann Institute of Science in Rehovot (Israel); Patrick Lemaire, from the Developmental Biology Institute of Marseilles-Luminy (France); Martin Lercher, from the University of Bath (United Kingdom); Alfonso Martínez-Arias, from the University of Cambridge (United Kingdom); Uwe Sauer, from the Institute for Molecular Systems Biology-ETH in Zurich (Switzerland); Ricard V. Solé, from the Universitat Pompeu Fabra in Barcelona (Spain); Marc Vidal, from the Dana-Farber Institute in Boston (USA); Ron Weiss, from Princeton University (USA); Mark Isalan and James Sharpe, both from the Centre for Genomic Regulation in Barcelona (Spain).

Systems Biology is an emerging discipline that aims at a quantitative understanding of biological systems to an extent that one is able to predict its response to external (drugs) or internal (mutations) disturbances and, in the future, even to modify them rationally (Synthetic Biology). The most obvious applications of Systems Biology are in the field of medicine. At the moment, the way medicine works is by using very similar drugs and treatments for everyone. We are all aware of the multibillion losses that pharmaceutical companies have suffered in the last years due to the commercialization of drugs that, although beneficial for a large part of the population are harmful for certain groups of people. Treatment of diseases today remains still to a large extent the same as when aspirin was discovered. Essentially either serendipitously or through the identification of putative targets in basic research a massive screening is done helped or lead by design software, and candidate drugs are then tested on different systems to assess their toxicity and potency. Drugs that pass this stage are then validated by very costly medical trails involving thousands of patients.

All this procedure is very costly and inefficient and it is based on the assumption that human diseases can be cured with a single drug. However, it is quite obvious that the majority of us will not die because of a single faulty gene, but because of the combination of many small alterations on different genes (multifactorial diseases) combined with our life style. Multifactorial diseases are hard to treat since they involve more than one gene product in an organism, often working in different cellular pathways. Thus we need first to be able to understand in a global and quantitative way how a complex biological system as the human being operates, to be able to tackle in a rational way the treatment of complex diseases. This is precisely one of the aims of Systems Biology.

Gloria Lligadas | alfa
Further information:
http://www.crg.es
http://pasteur.crg.es/portal/page/portal/Internet/04_EVENTS/HIDE-EVENTS/171E603F978A20E3E04012AC0E016846

Further reports about: 5th CRG United biological system

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>